谷歌的多任务统一模型(MUM)是多模态人工智能的另一个例子它承诺通过从 75 种不同语言中挖掘出的上下文信息对用户搜索结果进行优先排序从而提高用户的搜索体验。MUM 使用 T5 文本到文本框架比 BERT 中流行的基于变换器的自然语言处理模型要强大 1000 倍。
  英伟达的 GauGAN2 模型则将根据简单的文本输入生成照片般逼真的图像。它在一个单一的模型中结合了分割映射内画和文本到图像的生成,使其成为一个强大的多模态工具可以用文字和图画的混合来创造逼真的艺术。
  在不远的未来我们就可以见到计算机视觉、语言以及语音模型的融合,这使得人工智能更丰富,更自然逼真。
  趋势 3:简化和精简 MLOps
  机器学习操作(MLOps),是一个机器学习投入到工业生产中的实践,是机学习和 DevOPs 在软件领域交叉的产物,所以它许多方面与 2012 年的 DevOps 相。在 2012 年 DevOps 上线的时候,许多企业就意识到了它的价值,但是他们在实施 DevOps 的时候很困难,工具链非常复杂,生态系统也不够完善。而 MLOps 相比来说更加复杂,它的软件包包括安装、配置训练、推理基础设施、配置特征存储、配置模型注册表、监控模型的衰减以及检测模型漂移等所有的相关内容。其庞大的软件包也导致 MLOps 的部署比 DevOps 还困难。
  MLOps 是被纳入基于云计算的 ML 平台的概念之一,平台包括如络服务的 Amazon SageMaker, Azure ML,   以及谷歌的 Vertex AI。然而,它所拥有的这些能力却不能用于混合和边缘计算这两个环境。因此,监测边缘计算的环境模型被证明是企业要面临的一个重大挑战。在处理计算机视觉系统和交互式人工智能系统时,创建一个为其服务的监测边缘计算的模型就变得更加具有挑战性。
  随着 Kubeflow 和 MLflow 等开源项目的逐渐成熟,MLOps 其实已经很容易就能获取到。在未来几年我们或许可以看到一个精简和简化的 MLOps 方法横跨云领域和边缘计算环境。
  趋势 4:AI 驱动的开发者生产力
  在未来,人工智能几乎会影响到 IT 行业的每个方面,包括编程和开发。在过去的几年里,我们已经看到了诸如亚马逊代码大师这样的工具,该产品会在开发者编程时,为其提供智能建议,以提高代码质量,并识别出应用程序中最重要的代码行。就在最近,Github Copilot 作为一个 " 人工智能配对程序员 " 首次亮相,协助开发人员编写高效的代码。而 Salesforce 的研究团队也推出了 CodeT5,这是一个开源项目,将帮助 Apex 开发人员进行由人工智能驱动的编码。Tabnine,即以前的 Codata,将智能代码完全带到了主流开发环境。Ponicode 也是一个 AI 驱动的工具,可以提供函数创建、可视化和运行单元测试的快捷方式。

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐