觉得搞一个AI的智能问答知识库很难吗?那是你没有找对方向和工具,

今天我们分享一个开源项目,帮助你快速构建基于Langchain 和LLM 的本地知识库问答,在GitHub已经获得27K star,它就是:Langchain-Chatchat

Langchain-Chatchat 是什么

Langchain-Chatchat基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。

本项目利用 langchain 思想实现的基于本地知识库的问答应用,目前langchain可以说是开发LLM应用的首选框架,而本项目的目标就是建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。

依托于本项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。

实现原理

本项目全流程使用开源模型来实现本地知识库问答应用,最新版本中通过使用 FastChat 接入 Vicuna, Alpaca, LLaMA, Koala, RWKV 等模型,依托于 langchain 框架支持通过基于 FastAPI 提供的 API 调用服务,或使用基于 Streamlit 的 WebUI 进行操作。

可以通过下面的图来直观看到的整个流程的执行过程,非常值得参考学习。

再从从文档处理角度来看,实现流程如下:

这里需要注意,本项目未涉及微调、训练过程,但可利用微调或训练对本项目效果进行优化。

部署要求

软件要求:

操作系统

  • Linux Ubuntu 22.04.5 kernel version 6.7

其他系统可能出现系统兼容性问题。

最低要求

该要求仅针对标准模式,轻量模式使用在线模型,不需要安装torch等库,也不需要显卡即可运行。

  • Python 版本: >= 3.8(很不稳定), < 3.12
  • CUDA 版本: >= 12.1

推荐要求

开发者在以下环境下进行代码调试,在该环境下能够避免最多环境问题。

  • Python 版本 == 3.11.7
  • CUDA 版本: == 12.1

硬件要求:

如果想要顺利在GPU运行本地模型的 FP16 版本,你至少需要以下的硬件配置,来保证在我们框架下能够实现 稳定连续对话

  • ChatGLM3-6B & LLaMA-7B-Chat 等 7B模型 最低显存要求: 14GB 推荐显卡: RTX 4080
  • Qwen-14B-Chat 等 14B模型 最低显存要求: 30GB 推荐显卡: V100
  • Yi-34B-Chat 等 34B模型 最低显存要求: 69GB 推荐显卡: A100
  • Qwen-72B-Chat 等 72B模型 最低显存要求: 145GB 推荐显卡:多卡 A100 以上

实际部署配置示例

makefile
复制代码
处理器: Intel® Core™ i9 processor 14900K 
内存: 256 GB DDR5
显卡组:  NVIDIA RTX4090 X 1 / NVIDIA RTXA6000 X 1
硬盘: 1 TB
操作系统: Ubuntu 22.04 LTS / Arch Linux, Linux Kernel 6.6.7
显卡驱动版本: 545.29.06
Cuda版本: 12.3 Update 1
Python版本: 3.11.7

部署 Langchain-Chatchat

Docker 部署

开发组为开发者们提供了一键部署的 docker 镜像文件懒人包。开发者们可以在 AutoDL 平台和 Docker 平台一键部署。

arduino
复制代码
docker run -d --gpus all -p 80:8501 isafetech/chatchat:0.2.10
docker run -d --gpus all -p 80:8501 ccr.ccs.tencentyun.com/chatchat/chatchat:0.2.10
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.10

  • 该版本镜像大小 50.1GB,使用 v0.2.10,以 nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04 为基础镜像
  • 该版本为正常版本,非轻量化版本
  • 该版本内置并默认启用一个 Embedding 模型:bge-large-zh-v1.5,内置并默认启用 ChatGLM3-6B
  • 该版本目标为方便一键部署使用,请确保您已经在 Linux 发行版上安装了 NVIDIA 驱动程序
  • 请注意,您不需要在主机系统上安装 CUDA 工具包,但需要安装 NVIDIA Driver 以及 NVIDIA Container Toolkit,请参考安装指南

本地部署方案

  • 安装python环境
shell
复制代码
# 首先,确信你的机器安装了 Python 3.8 - 3.10 版本
$ python --version
Python 3.8.13

$ conda create -p /your_path/env_name python=3.8
$ source activate /your_path/env_name

$ conda create -n env_name python=3.8
$ conda activate env_name # Activate the environment

# 更新py库
$ pip3 install --upgrade pip

  • 安装项目相关的依赖
shell
复制代码
# 拉取仓库
$ git clone --recursive <https://github.com/chatchat-space/Langchain-Chatchat.git>

# 进入目录
$ cd Langchain-Chatchat

# 安装全部依赖
$ pip install -r requirements.txt

# 默认依赖包括基本运行环境(FAISS向量库)。以下是可选依赖:
- 如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
- 如果要开启 OCR GPU 加速,请安装 rapidocr_paddle[gpu]
- 如果要使用在线 API 模型,请安装对用的 SDK

  • 模型下,如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。
shell
复制代码
$ git lfs install
$ git clone <https://huggingface.co/THUDM/chatglm2-6b>
$ git clone <https://huggingface.co/moka-ai/m3e-base>

  • 初始化知识库,当前项目的知识库信息存储在数据库中,在正式运行项目之前请先初始化数据库
ruby
复制代码
#如果您已经有创建过知识库
$ python init_database.py --create-tables
#如果您是第一次运行本项目
$ python init_database.py --recreate-vs

  • 一键启动,一键启动脚本 startup.py, 一键启动所有 Fastchat 服务、API 服务、WebUI 服务
css
复制代码
$ python startup.py -a

启动界面

正常启动后,会有两种使用界面,一种是webui,如下:

Web UI 知识库管理页面

另一种使用方式是API,以下是查看提供的API。

最轻模式

以上的部署方式是需要显卡的,对于我们这些没卡的一族来说,就很尴尬。但是项目很贴心,提供一个lite模式,该模式的配置方式与常规模式相同,但无需安装 torch 等重依赖,通过在线API实现 LLM 和 Ebeddings 相关功能,适合没有显卡的电脑使用。

css
复制代码
$ pip install -r requirements_lite.txt
$ python startup.py -a --lite

该模式支持的在线 Embeddings 包括:

  • 智谱AI
  • MiniMax
  • 百度千帆
  • 阿里云通义千问

在 model_config.py 中 将 LLM_MODELS 和 EMBEDDING_MODEL 设置为可用的在线 API 名称即可

总结

项目的结构非常不错,针对当前热门的AI知识库给出一种非常好的构建方式,而且还做到了全链条的开源产品,所以无论你是希望直接使用它来构建知识库,还是希望通过本项目学习和实现自己的解决方案,都会是非常好的选择。

我也建议大家不要单纯的伸手党,还是要自己去研究一下项目的架构,因为这类项目实际上最精华的就是架构设计。

项目信息

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

本文转自 https://blog.csdn.net/pythonhy/article/details/140469867?spm=1001.2014.3001.5501,如有侵权,请联系删除。

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐