我们在工作中用到网络上发布的各种信息,如果用搜索引擎查找并整理,需要花费大量时间,现在python能够帮助我们,使用爬虫技术,提高数据查找和整理的效率。

我们来找一个爬虫的案例——抓取求职招聘类网站中的数据。使用环境:win10+python3+Juypter Notebook

第一步:分析网页

第一步:分析网页

要爬取一个网页,首先分析网页结构。

现在很多网站都用Ajax(异步加载)的技术,打开网页,先给你看上面一部分东西,然后剩下的东西再慢慢加载。所以你可以看到很多网页,都是慢慢的刷出来的,或者有些网站随着你的移动,很多信息才慢慢加载出来。这样的网页有个好处,就是网页加载速度特别快。

但这个技术是不利于爬虫的爬取的,我们可以借助chrome浏览器的小工具进行分析,进入网络分析界面,界面如下:
在这里插入图片描述
这时候是一片空白,我们刷新一下,就可以看到一系列的网络请求了。
在这里插入图片描述
然后我们就开始找可疑的网页资源。首先,图片,css什么之类的可以跳过,一般来说,关注点放在xhr这种类型请求上,如下:
在这里插入图片描述
这类数据一般都会用json格式,我们也可以尝试在过滤器中输入json,来筛选寻找。
在这里插入图片描述

上图发现了两个xhr请求,从字面意思看很有可能是我们需要的信息,右键点击,在另一个界面打开。

我们可以在右边的框中,切换到“Preview”,然后点content——positionResult查看,能看到是关于职位的信息,以键值对的格式呈现,这就是json格式,特别适合网页数据交换。

第二步,网址构造

在“Headers”中,看到网页地址,通过观察网页地址可以发现推测出:http://www.lagou.com/jobs/positionAjax.json?这一段是固定的,剩下的我们发现有个city=%E5%8C%97%E4%BA%AC&needAddtionalResult=false&isSchoolJob=0

再查看请求发送参数列表,到这里我们可以肯定city参数便是城市,pn参数便是页数,kd参数便是职位关键字。

再来看看关于职位,一共有30页,每页有15个数据,所以我们只需要构造循环,遍历每一页的数据。

第三步,编写爬虫脚本写代码

需要说明的是因为这个网页的格式是用的json,那么我们可以用json格式很好的读出内容。这里我们切换成到preview下,然后点content——positionResult——result,可以发现出先一个列表,再点开就可以看到每个职位的内容。为什么要从这里看?有个好处就是知道这个json文件的层级结构,方便等下编码。

具体代码展示:

import requests,json
from openpyxl import Workbook

#http请求头信息
headers={
'Accept':'application/json, text/javascript, */*; q=0.01',
'Accept-Encoding':'gzip, deflate, br',
'Accept-Language':'zh-CN,zh;q=0.8',
'Connection':'keep-alive',
'Content-Length':'25',
'Content-Type':'application/x-www-form-urlencoded; charset=UTF-8',
'Cookie':'user_trace_token=20170214020222-9151732d-f216-11e6-acb5-525400f775ce; LGUID=20170214020222-91517b06-f216-11e6-acb5-525400f775ce; JSESSIONID=ABAAABAAAGFABEF53B117A40684BFB6190FCDFF136B2AE8; _putrc=ECA3D429446342E9; login=true; unick=yz; showExpriedIndex=1; showExpriedCompanyHome=1; showExpriedMyPublish=1; hasDeliver=0; PRE_UTM=; PRE_HOST=; PRE_SITE=; PRE_LAND=https%3A%2F%2Fwww.lagou.com%2F; TG-TRACK-CODE=index_navigation; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1494688520,1494690499,1496044502,1496048593; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1496061497; _gid=GA1.2.2090691601.1496061497; _gat=1; _ga=GA1.2.1759377285.1487008943; LGSID=20170529203716-8c254049-446b-11e7-947e-5254005c3644; LGRID=20170529203828-b6fc4c8e-446b-11e7-ba7f-525400f775ce; SEARCH_ID=13c3482b5ddc4bb7bfda721bbe6d71c7; index_location_city=%E6%9D%AD%E5%B7%9E',
'Host':'www.lagou.com',
'Origin':'https://www.lagou.com',
'Referer':'https://www.lagou.com/jobs/list_Python?',
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
'X-Anit-Forge-Code':'0',
'X-Anit-Forge-Token':'None',
'X-Requested-With':'XMLHttpRequest'
}


def get_json(url, page, lang_name):
    data = {'first': "true", 'pn': page, 'kd': lang_name,'city':"北京"}

#POST请求
    json = requests.post(url,data,headers=headers).json()
    list_con = json['content']['positionResult']['result']
    info_list = []
for i in list_con:
        info = []
        info.append(i['companyId'])
        info.append(i['companyFullName'])
        info.append(i['companyShortName'])
        info.append(i['companySize'])
        info.append(str(i['companyLabelList']))

        info.append(i['industryField'])
        info.append(i['financeStage'])

        info.append(i['positionId'])
        info.append(i['positionName'])
        info.append(i['positionAdvantage'])
#         info.append(i['positionLables'])

        info.append(i['city'])        
        info.append(i['district'])
#         info.append(i['businessZones'])

        info.append(i['salary']) 
        info.append(i['education'])         
        info.append(i['workYear'])    
        info_list.append(info)
return info_list


def main():
    lang_name = input('职位名:')
    page = 1
    url = 'http://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false'
    info_result=[]  
    title = ['公司ID','公司全名','公司简称','公司规模','公司标签','行业领域','融资情况',"职位编号", "职位名称","职位优势","城市","区域","薪资水平",'教育程度', "工作经验"]    
    info_result.append(title)  

#遍历网址  
    while page < 31:
        info = get_json(url, page, lang_name)
        info_result = info_result + info
        page += 1
#写入excel文件
        wb = Workbook()
        ws1 = wb.active
        ws1.title = lang_name
for row in info_result:
            ws1.append(row)
        wb.save('职位信息3.xlsx')


main()

打开excel文件,查看数据是否存取成功:
在这里插入图片描述
我们看到关于招聘类网站中抓取的数据,被成功的保存在excel表格中。

读者福利:知道你对Python感兴趣,便准备了这套python学习资料

👉[[CSDN大礼包:《python兼职资源&全套学习资料》免费分享]]安全链接,放心点击

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

  • ① Python所有方向的学习路线图,清楚各个方向要学什么东西
  • ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析
  • ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论
  • ④ 20款主流手游迫解 爬虫手游逆行迫解教程包
  • 爬虫与反爬虫攻防教程包,含15个大型网站迫解
  • 爬虫APP逆向实战教程包,含45项绝密技术详解
  • ⑦ 超300本Python电子好书,从入门到高阶应有尽有
  • ⑧ 华为出品独家Python漫画教程,手机也能学习
  • ⑨ 历年互联网企业Python面试真题,复习时非常方便

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。
在这里插入图片描述

👉面试刷题👈

在这里插入图片描述

在这里插入图片描述

👉python副业兼职与全职路线👈

在这里插入图片描述

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码 即可领取↓↓↓

👉[[CSDN大礼包:《python安装包&全套学习资料》免费分享]]安全链接,放心点击

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐