python skimage库LBP提取特征local_binary_pattern参数解释
LBP算法skimage.feature.local_binary_pattern参数解释函数local_binary_pattern(image, P, R, method='default')参数:image:(N,M)阵列Graylevel图像。P:int圆对称邻居设置点的数量(角度空间的量化)。R:float圆的半径(操作员的空间分辨率)。method:{‘default’,‘ror’,‘
·
函数
local_binary_pattern(image, P, R, method='default')
参数
image:(N,M)阵列Graylevel图像。
P:int圆对称邻居设置点的数量(角度空间的量化)。
R:float圆的半径(操作员的空间分辨率)。
method:{‘default’,‘ror’,‘uniform’,‘var’}确定模式的方法。
'default':原始的局部二值模式,它是灰度但不是旋转不变的。
'ror':扩展灰度和旋转不变的默认实现。
'uniform':改进的旋转不变性和均匀的模式以及角度空间的更精细的量化,灰度和旋转不变。
'nri_uniform':非旋转不变的均匀图案变体,它只是灰度不变的R199。
'VAR':局部对比度的旋转不变方差度量,图像纹理是旋转但不是灰度不变的。
返回值:
输出:(N,M)阵列LBP图像。
skimage函数库中local_binary_pattern函数定义:
def local_binary_pattern(image, P, R, method='default'):
"""Gray scale and rotation invariant LBP (Local Binary Patterns).
LBP is an invariant descriptor that can be used for texture classification.
Parameters
----------
image : (N, M) array
Graylevel image.
P : int
Number of circularly symmetric neighbour set points (quantization of
the angular space).
R : float
Radius of circle (spatial resolution of the operator).
method : {'default', 'ror', 'uniform', 'var'}
Method to determine the pattern.
* 'default': original local binary pattern which is gray scale but not
rotation invariant.
* 'ror': extension of default implementation which is gray scale and
rotation invariant.
* 'uniform': improved rotation invariance with uniform patterns and
finer quantization of the angular space which is gray scale and
rotation invariant.
* 'nri_uniform': non rotation-invariant uniform patterns variant
which is only gray scale invariant [2]_, [3]_.
* 'var': rotation invariant variance measures of the contrast of local
image texture which is rotation but not gray scale invariant.
Returns
-------
output : (N, M) array
LBP image.
References
----------
.. [1] T. Ojala, M. Pietikainen, T. Maenpaa, "Multiresolution gray-scale
and rotation invariant texture classification with local binary
patterns", IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 971-987, July 2002
:DOI:`10.1109/TPAMI.2002.1017623`
.. [2] T. Ahonen, A. Hadid and M. Pietikainen. "Face recognition with
local binary patterns", in Proc. Eighth European Conf. Computer
Vision, Prague, Czech Republic, May 11-14, 2004, pp. 469-481, 2004.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6851
:DOI:`10.1007/978-3-540-24670-1_36`
.. [3] T. Ahonen, A. Hadid and M. Pietikainen, "Face Description with
Local Binary Patterns: Application to Face Recognition",
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 12, pp. 2037-2041, Dec. 2006
:DOI:`10.1109/TPAMI.2006.244.`
"""
check_nD(image, 2)
methods = {
'default': ord('D'),
'ror': ord('R'),
'uniform': ord('U'),
'nri_uniform': ord('N'),
'var': ord('V')
}
image = np.ascontiguousarray(image, dtype=np.double)
output = _local_binary_pattern(image, P, R, methods[method.lower()])
return output
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
已为社区贡献7条内容
所有评论(0)