线性代数 python_Python | 线性代数
线性代数 pythonLinear Algebra is a branch of mathematics that deals with large data by the use of Vectors and Matrices. It introduces a different way of viewing and understanding large data. Matrices and
线性代数 python
Linear Algebra is a branch of mathematics that deals with large data by the use of Vectors and Matrices. It introduces a different way of viewing and understanding large data. Matrices and Vectors are the primary tools and are used for data representations. A vector is also a unit column matrix. Linear Algebra can also be defined as "Mathematics of n-dimensional Space". It involves four subspaces:
线性代数是数学的一个分支,它通过使用向量和矩阵来处理大数据。 它引入了查看和理解大数据的另一种方式。 矩阵和向量是主要工具,用于数据表示。 向量也是单位列矩阵。 线性代数也可以定义为“ n维空间数学”。 它涉及四个子空间:
Column Space
列空间
Row Space
行空间
Null Space
空空间
Left Null Space
左空空间
There are multiple types of matrices and multiple operations that can be done on Matrices. In this learning sequence, we are going to use python to implement these matrices and how to manipulate them using different operations.
有多种类型的矩阵和可以对矩阵执行的多种操作。 在此学习序列中,我们将使用python实现这些矩阵以及如何使用不同的操作来操纵它们。
Why should we use Python?
为什么要使用Python?
Python is a higher-level computer programming language. Apart from this, it provides a large number of packages (mainly numpy for matrices and vectors) which allow us to perform operations on big data very effectively as well as it is very efficacious.
Python是高级计算机编程语言。 除此之外,它提供了大量的程序包(主要是矩阵和矢量的numpy程序包),这些程序包使我们能够非常有效地对大数据执行操作,并且非常有效。
Python is being used almost everywhere. Python use in projects, software development, algorithmic programming/machine learning, and research made it one of the cardinal languages in computer science. Python provides a freehand for learning Linear Algebra so that you can implement it in any of the domains.
几乎所有地方都在使用Python。 Python在项目,软件开发,算法编程/机器学习和研究中的使用使其成为计算机科学中的主要语言之一。 Python提供了学习线性代数的徒手画法,因此您可以在任何领域中实现它。
线性代数中的python程序列表 (List of python programs in linear algebra)
Python | Sign and Natural Logarithm of Determinant of a Matrix
Printing sin value of vector/matrix elements using numpy.sin()
Printing hyperbolic tangent value of vector/matrix elements using numpy.tanh()
Printing Cosine value of vector/matrix (element wise operation)
Printing logarithmic value of vector/matrix (element wise operation)
Printing exponential value of vector/matrix elements using numpy.exp()
神经网络 (Neural Network)
线性代数在机器学习中的应用 (Application of Linear Algebra in Machine Learning)
线性代数 python
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)