C++数值极限numeric_limits
一般来说,数值类型的极值是一个与平台相关的特性。C++标准程序库通过template numeric_limits提供这些极值,取代传统C语言所采用的预处理常数。你仍然可以使用后者,其中整数常数定义于和,浮点常数定义于和,新的极值概念有两个优点,一是提供了更好的类型安全性,二是程序员可借此写出一些template以核定这些极值。3. 示例输出参考文献http://www.cplusplus.com
·
一般来说,数值类型的极值是一个与平台相关的特性。C++标准程序库通过template numeric_limits提供这些极值,取代传统C语言所采用的预处理常数。你仍然可以使用后者,其中整数常数定义于<climits>和<limits.h>,浮点常数定义于<cfloat>和<float.h>,新的极值概念有两个优点,一是提供了更好的类型安全性,二是程序员可借此写出一些template以核定这些极值。
1. 函数介绍
member | type | property |
---|---|---|
is_specialized | bool | true for all arithmetic types (i.e., those for which numeric_limits is specialized).false for all other types. |
min() | T | Minimum finite value. For floating types with denormalization (variable number of exponent bits): minimum positive normalized value. Equivalent to CHAR_MIN, SCHAR_MIN, SHRT_MIN, INT_MIN, LONG_MIN, LLONG_MIN, FLT_MIN, DBL_MIN, LDBL_MIN or 0 , depending on type. |
max() | T | Maximum finite value. Equivalent to CHAR_MAX, SCHAR_MAX, UCHAR_MAX, SHRT_MAX, USHRT_MAX, INT_MAX, UINT_MAX, LONG_MAX, ULONG_MAX, LLONG_MAX, ULLONG_MAX, UINT_LEAST16_MAX, UINT_LEAST32_MAX, FLT_MAX, DBL_MAX or LDBL_MAX, depending on type. |
lowest() | T | Minimum finite value. (since C++11) For integral types: the same as min(). For floating-point types: implementation-dependent; generally, the negative of max(). |
digits | int | For integer types: number of non-sign bits (radix base digits) in the representation. For floating types: number of digits (in radix base) in the mantissa (equivalent to FLT_MANT_DIG, DBL_MANT_DIG or LDBL_MANT_DIG). |
digits10 | int | Number of digits (in decimal base) that can be represented without change. Equivalent to FLT_DIG, DBL_DIG or LDBL_DIG for floating types. |
max_digits10 | int | Number of digits (in decimal base) required to ensure that values that differ are always differentiated. |
is_signed | bool | true if type is signed. |
is_integer | bool | true if type is integer. |
is_exact | bool | true if type uses exact representations. |
radix | int | For integer types: base of the representation. For floating types: base of the exponent of the representation (equivalent to FLT_RADIX). |
epsilon() | T | Machine epsilon (the difference between 1 and the least value greater than 1 that is representable). Equivalent to FLT_EPSILON, DBL_EPSILON or LDBL_EPSILON for floating types. |
round_error() | T | Measure of the maximum rounding error. |
min_exponent | int | Minimum negative integer value such that radix raised to (min_exponent-1) generates a normalized floating-point number.Equivalent to FLT_MIN_EXP, DBL_MIN_EXP or LDBL_MIN_EXP for floating types. |
min_exponent10 | int | Minimum negative integer value such that 10 raised to that power generates a normalized floating-point number. Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP or LDBL_MIN_10_EXP for floating types. |
max_exponent | int | Maximum integer value such that radix raised to (max_exponent-1) generates a representable finite floating-point number.Equivalent to FLT_MAX_EXP, DBL_MAX_EXP or LDBL_MAX_EXP for floating types. |
max_exponent10 | int | Maximum integer value such that 10 raised to that power generates a normalized finite floating-point number. Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP or LDBL_MAX_10_EXP for floating types. |
has_infinity | bool | true if the type has a representation for positive infinity. |
has_quiet_NaN | bool | true if the type has a representation for a quiet (non-signaling) "Not-a-Number". |
has_signaling_NaN | bool | true if the type has a representation for a signaling "Not-a-Number". |
has_denorm | float_denorm_style | Denormalized values (representations with a variable number of exponent bits). A type may have any of the following enum values: denorm_absent, if it does not allow denormalized values. denorm_present, if it allows denormalized values. denorm_indeterminate, if indeterminate at compile time. |
has_denorm_loss | bool | true if a loss of accuracy is detected as a denormalization loss, rather than an inexact result. |
infinity() | T | Representation of positive infinity, if available. |
quiet_NaN() | T | Representation of quiet (non-signaling) "Not-a-Number", if available. |
signaling_NaN() | T | Representation of signaling "Not-a-Number", if available. |
denorm_min() | T | Minimum positive denormalized value. For types not allowing denormalized values: same as min() . |
is_iec559 | bool | true if the type adheres to IEC-559 / IEEE-754 standard.An IEC-559 type always has has_infinity, has_quiet_NaN and has_signaling_NaN set to true ; And infinity, quiet_NaN and signaling_NaN return some non-zero value. |
is_bounded | bool | true if the set of values represented by the type is finite. |
is_modulo | bool | true if the type is modulo. A type is modulo if it is possible to add two positive numbers and have a result that wraps around to a third number that is less. |
traps | bool | true if trapping is implemented for the type. |
tinyness_before | bool | true if tinyness is detected before rounding. |
round_style | float_round_style | Rounding style. A type may have any of the following enum values: round_toward_zero, if it rounds toward zero. round_to_nearest, if it rounds to the nearest representable value. round_toward_infinity, if it rounds toward infinity. round_toward_neg_infinity, if it rounds toward negative infinity. round_indeterminate, if the rounding style is indeterminable at compile time. |
2. 函数定义
template <class T> class numeric_limits {
public:
static constexpr bool is_specialized = false;
static constexpr T min() noexcept { return T(); }
static constexpr T max() noexcept { return T(); }
static constexpr T lowest() noexcept { return T(); }
static constexpr int digits = 0;
static constexpr int digits10 = 0;
static constexpr bool is_signed = false;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr int radix = 0;
static constexpr T epsilon() noexcept { return T(); }
static constexpr T round_error() noexcept { return T(); }
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr T infinity() noexcept { return T(); }
static constexpr T quiet_NaN() noexcept { return T(); }
static constexpr T signaling_NaN() noexcept { return T(); }
static constexpr T denorm_min() noexcept { return T(); }
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;
static constexpr bool is_modulo = false;
static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;
};
3. 示例
// numeric_limits example
#include <iostream> // std::cout
#include <limits> // std::numeric_limits
int main () {
std::cout << std::boolalpha;
std::cout << "Minimum value for int: " << std::numeric_limits<int>::min() << '\n';
std::cout << "Maximum value for int: " << std::numeric_limits<int>::max() << '\n';
std::cout << "int is signed: " << std::numeric_limits<int>::is_signed << '\n';
std::cout << "Non-sign bits in int: " << std::numeric_limits<int>::digits << '\n';
std::cout << "int has infinity: " << std::numeric_limits<int>::has_infinity << '\n';
return 0;
}
输出
Minimum value for int: -2147483648
Maximum value for int: 2147483647
int is signed: true
Non-sign bits in int: 31
int has infinity: false
参考文献
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
已为社区贡献90条内容
所有评论(0)