1. 速度梯度、变形率张量与物质旋律张量

对于速度场 v ⃗ = v ⃗ ( x ⃗ , t ) = v i g ⃗ i \vec{v}=\vec{v}(\vec{x},t)=v^i\vec{g}_i v =v (x ,t)=vig i,其右梯度 (称作速度梯度) 可写作
v ⃗ ▽ = ∂ v ⃗ ∂ x j ⊗ g ⃗   j = v i ∣ j g ⃗ i ⊗ g ⃗ j ≜ L       = ∂ v ⃗ ∂ X A ∂ X A ∂ x j ⊗ g ⃗   j = ∂ v ⃗ ∂ X A ⊗ C ⃗ A = v B ∣ ∣ A C ⃗ B ⊗ C ⃗ A = C ⃗ ∙ A ⊗ C ⃗ A       = ( C ⃗ ∙ B ⊗ G ⃗ B ) ⋅ ( G ⃗ A ⊗ C ⃗ A ) = F ∙ ⋅ F − 1 \begin{aligned} & \vec{v}\triangledown =\dfrac{\partial \vec{v}}{\partial x^j}\otimes\vec{g}\ ^j =v^i|_j\vec{g}_i\otimes\vec{g}^j\triangleq\bold L\\\\ &\ \ \ \ \ =\dfrac{\partial \vec{v}}{\partial X^A}\dfrac{\partial X^A}{\partial x^j}\otimes\vec{g}\ ^j =\dfrac{\partial \vec{v}}{\partial X^A}\otimes\vec{C}^A =v^B||_A\vec{C}_B\otimes\vec{C}^A =\overset{\bullet}{\vec{C}}_A\otimes\vec{C}^A \\\\ &\ \ \ \ \ =(\overset{\bullet}{\vec{C}}_B\otimes\vec{G}^B)\cdot(\vec{G}_A\otimes\vec{C}^A) =\overset{\bullet}{\bold F}\cdot\overset{-1}{\bold F} \end{aligned} v =xjv g  j=vijg ig jL     =XAv xjXAg  j=XAv C A=vBAC BC A=C AC A     =(C BG B)(G AC A)=FF1
速度梯度的对称部分称作变形率张量
D = 1 2 ( L + L T ) = 1 2 ( v ⃗ ▽ + ▽ v ⃗ ) \bold D=\dfrac{1}{2}(\bold L+\bold L^T)=\dfrac{1}{2}(\vec{v}\triangledown+\triangledown\vec{v}) D=21(L+LT)=21(v +v )
速度梯度的反对称部分称作物质旋率张量
W = 1 2 ( L − L T ) = 1 2 ( v ⃗ ▽ − ▽ v ⃗ ) \bold W=\dfrac{1}{2}(\bold L-\bold L^T)=\dfrac{1}{2}(\vec{v}\triangledown-\triangledown\vec{v}) W=21(LLT)=21(v v )
轴向量为:
ω ⃗ = 1 2 ( ▽ × v ⃗ ) \vec{\omega}=\dfrac{1}{2}(\triangledown\times\vec{v}) ω =21(×v )
此外还可以表示为:
ω ⃗ = − 1 4 ϵ : ( C ⃗ ∙ A ⊗ C ⃗ A − C ⃗ A ⊗ C ⃗ ∙ A ) = 1 2 C ⃗ A × C ⃗ ∙ A \vec{\omega}=-\dfrac{1}{4}\epsilon:(\overset{\bullet}{\vec{C}}_A\otimes\vec{C}^A -\vec{C}^A\otimes\overset{\bullet}{\vec{C}}_A ) =\dfrac{1}{2}\vec{C}^A\times\overset{\bullet}{\vec{C}}_A ω =41ϵ:(C AC AC AC A)=21C A×C A
定义 处处满足 w ⃗ = 0 \vec{w}=0 w =0 W = 0 \bold W=0 W=0 的运动称为无旋运动

2. 加速度梯度

加速度为:
a ⃗ = v ⃗ ∙ = v ⃗ ′ + ( v ⃗ ▽ ) ⋅ v ⃗    = v ⃗ ′ + L ⋅ v ⃗ = v ⃗ ′ + ( D + W ) ⋅ v ⃗    = v ⃗ ′ + D ⋅ v ⃗ + ω ⃗ × v ⃗    = v ⃗ ′ + 1 2 ▽ ( v ⃗ ⋅ v ⃗ ) + 2 W ⋅ v ⃗ \begin{aligned} &\vec{a} =\overset{\bullet}{\vec{v}} =\vec{v}'+(\vec{v}\triangledown)\cdot\vec{v} \\\\ &\ \ =\vec{v}'+\bold{L}\cdot\vec{v}=\vec{v}'+\bold{(D+W)}\cdot\vec{v}\\\\ &\ \ =\vec{v}'+\bold{D}\cdot\vec{v}+\vec{\omega}\times\vec{v} \\\\ &\ \ =\vec{v}'+\dfrac{1}{2}\triangledown(\vec{v}\cdot\vec{v})+2\bold{W}\cdot\vec{v} \end{aligned} a =v =v +(v )v   =v +Lv =v +(D+W)v   =v +Dv +ω ×v   =v +21(v v )+2Wv
其中,最后一式是由于
W ⋅ v ⃗ = w ⃗ × v ⃗ = 1 2 ( ▽ × v ⃗ ) × v ⃗ = 1 2 ( v ⃗ ▽ − ▽ v ⃗ ) ⋅ v ⃗ = 1 2 ( L ⋅ v ⃗ − ▽ v ⃗ ⋅ v ⃗ ) = 1 2 [ L ⋅ v ⃗ − 1 2 ▽ ( v ⃗ ⋅ v ⃗ ) ] \bold{W}\cdot\vec{v} =\vec{w}\times\vec{v} =\dfrac{1}{2}(\triangledown\times\vec{v})\times\vec{v} =\dfrac{1}{2}(\vec{v}\triangledown-\triangledown\vec{v})\cdot\vec{v} =\dfrac{1}{2}(\bold L\cdot\vec{v}-\triangledown\vec{v}\cdot\vec{v}) =\dfrac{1}{2}[\bold L\cdot\vec{v}-\dfrac{1}{2}\triangledown(\vec{v}\cdot\vec{v})] Wv =w ×v =21(×v )×v =21(v v )v =21(Lv v v )=21[Lv 21(v v )]

加速度的 (右) 梯度 定义为:
a ⃗ ▽ = ∂ a ⃗ ∂ x i ⊗ g ⃗ i = ∂ a ⃗ ∂ X A ⊗ C ⃗ A = a B ∣ ∣ A C ⃗ B ⊗ C ⃗ A   = C ⃗ ∙ ∙ A ⊗ C ⃗ A = ( C ⃗ ∙ ∙ A ⊗ G ⃗ A ) ⋅ ( G ⃗ B ⊗ C ⃗ B ) = F ∙ ∙ ⋅ F − 1 \begin{aligned} & \vec{a}\triangledown =\dfrac{\partial \vec{a}}{\partial x^i}\otimes\vec{g}^i =\dfrac{\partial \vec{a}}{\partial X^A}\otimes\vec{C}^A =a^B||_A\vec{C}_B\otimes\vec{C}^A\\\\ &\quad\ =\overset{\bullet\bullet}{\vec{C}}_A\otimes\vec{C}^A =(\overset{\bullet\bullet}{\vec{C}}_A\otimes\vec{G}^A)\cdot(\vec{G}_B\otimes\vec{C}^B) =\overset{\bullet\bullet}{\bold F}\cdot\overset{-1}{\bold F} \end{aligned} a =xia g i=XAa C A=aBAC BC A =C ∙∙AC A=(C ∙∙AG A)(G BC B)=F∙∙F1

继续讨论前,给出如下命题:

对于任意仿射量 Ψ \Psi Ψ,有:
( Ψ ∙ ) T = ( Ψ T ) ∙ \left(\overset{\bullet}{\Psi}\right)^T=\overset{\bullet}{\left(\Psi^T\right)} (Ψ)T=(ΨT)
证明:对任意向量 a ⃗ , b ⃗ \vec{a},\vec{b} a b 满足:
a ⃗ ⋅ Ψ ⋅ b ⃗ = b ⃗ ⋅ Ψ T ⋅ a ⃗ \vec{a}\cdot\bold{\Psi}\cdot\vec{b}=\vec{b}\cdot\bold{\Psi}^T\cdot\vec{a} a Ψb =b ΨTa
那么,
a ⃗ ∙ ⋅ Ψ ⋅ b ⃗ + a ⃗ ⋅ Ψ ∙ ⋅ b ⃗ + a ⃗ ⋅ Ψ ⋅ b ⃗ ∙ = b ⃗ ∙ ⋅ ( Ψ T ) ⋅ a ⃗ + b ⃗ ⋅ ( Ψ T ) ∙ ⋅ a ⃗ + b ⃗ ⋅ ( Ψ T ) ⋅ a ⃗ ∙ \overset{\bullet}{\vec{a}}\cdot\bold{\Psi}\cdot\vec{b} +\vec{a}\cdot\overset{\bullet}{\bold{\Psi}}\cdot\vec{b} +\vec{a}\cdot\bold{\Psi}\cdot\overset{\bullet}{\vec{b}} =\overset{\bullet}{\vec{b}}\cdot(\bold{\Psi}^T)\cdot\vec{a} +\vec{b}\cdot\overset{\bullet}{(\bold{\Psi}^T)}\cdot\vec{a} +\vec{b}\cdot(\bold{\Psi}^T)\cdot\overset{\bullet}{\vec{a}} a Ψb +a Ψb +a Ψb =b (ΨT)a +b (ΨT)a +b (ΨT)a

a ⃗ ⋅ Ψ ∙ ⋅ b ⃗ = b ⃗ ⋅ ( Ψ T ) ∙ ⋅ a ⃗ ⟹ b ⃗ ⋅ [ ( Ψ ∙ ) T − ( Ψ T ) ∙ ] ⋅ a ⃗ = 0 \vec{a}\cdot\overset{\bullet}{\bold{\Psi}}\cdot\vec{b} =\vec{b}\cdot\overset{\bullet}{(\bold{\Psi}^T)}\cdot\vec{a} \Longrightarrow \vec{b}\cdot\left[\left(\overset{\bullet}{\Psi}\right)^T-\overset{\bullet}{(\bold{\Psi}^T)}\right]\cdot\vec{a} =0 a Ψb =b (ΨT)a b [(Ψ)T(ΨT)]a =0
a ⃗ , b ⃗ \vec{a},\vec{b} a b 的任意性可知命题成立。故此二者可以不加区分运算的先后次序。另外还表明:对称仿射量的物质导数是对称仿射量,反对称仿射量的物质导数为反对称仿射量。

加速度梯度的反对称部分记为:
J = 1 2 ( a ⃗ ▽ − ▽ a ⃗ ) \bold J=\dfrac{1}{2}(\vec{a}\triangledown-\triangledown\vec{a}) J=21(a a )

由于恒等式:
2 F T ⋅ W ⋅ F = F T ⋅ ( F ∙ ⋅ F − 1 − F − T ⋅ F ∙   T ) ⋅ F = F T ⋅ F ∙ − F ∙   T ⋅ F 2\bold F^T\cdot\bold W\cdot\bold F =\bold F^T\cdot(\overset{\bullet}{\bold F}\cdot\bold F^{-1}-\bold F^{-T}\cdot\overset{\bullet}{\bold F}\ ^T)\cdot\bold F =\bold F^T\cdot\overset{\bullet}{\bold F}-\overset{\bullet}{\bold F}\ ^T\cdot \bold F 2FTWF=FT(FF1FTF T)F=FTFF TF
对左侧求物质导数有:
2 [ F ∙   T ⋅ W ⋅ F + F T ⋅ W ∙ ⋅ F + F T ⋅ W ⋅ F ∙ ] = 2 F T ⋅ ( L T ⋅ W + W ∙ + W ⋅ L ) ⋅ F = 2 F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F + 2 F T ⋅ ( L T − L 2 ⋅ W + W ⋅ L − L T 2 ) ⋅ F = 2 F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F + 2 F T ⋅ ( − W 2 + W 2 ) ⋅ F = 2 F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F \begin{aligned} & \quad 2[\overset{\bullet}{\bold F}\ ^T\cdot\bold W\cdot\bold F+\bold F^T\cdot\overset{\bullet}{\bold W}\cdot\bold F+\bold F^T\cdot\bold W\cdot\overset{\bullet}{\bold F}] \\\\ &=2{\bold F}^T\cdot(\bold L^T\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold L)\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F+2{\bold F}^T\cdot(\dfrac{\bold L^T-\bold L}{2}\cdot\bold W+\bold W\cdot\dfrac{\bold L-\bold L^T}{2})\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F+2{\bold F}^T\cdot(-\bold W^2+\bold W^2)\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F \end{aligned} 2[F TWF+FTWF+FTWF]=2FT(LTW+W+WL)F=2FT(DW+W+WD)F+2FT(2LTLW+W2LLT)F=2FT(DW+W+WD)F+2FT(W2+W2)F=2FT(DW+W+WD)F
对右侧求物质导数:
F ∙   T ⋅ F ∙ + F T ⋅ F ∙ ∙ − F ∙ ∙   T ⋅ F − F ∙   T ⋅ F ∙ = F T ⋅ F ∙ ∙ − F ∙ ∙   T ⋅ F = F T ⋅ ( F ∙ ∙ ⋅ F − 1 − F − T ⋅ F ∙ ∙   T ) ⋅ F = F T ⋅ ( a ⃗ ▽ − ▽ a ⃗ ) ⋅ F = 2 F T ⋅ J ⋅ F \begin{aligned} & \quad \overset{\bullet}{\bold F}\ ^T\cdot\overset{\bullet}{\bold F}+\bold F^T\cdot\overset{\bullet\bullet}{\bold F}-\overset{\bullet\bullet}{\bold F}\ ^T\cdot \bold F-\overset{\bullet}{\bold F}\ ^T\cdot \overset{\bullet}{\bold F} \\\\ &=\bold F^T\cdot\overset{\bullet\bullet}{\bold F}-\overset{\bullet\bullet}{\bold F}\ ^T\cdot \bold F \\\\ &=\bold F^T\cdot(\overset{\bullet\bullet}{\bold F}\cdot\bold F^{-1}-\bold F^{-T}\cdot\overset{\bullet\bullet}{\bold F}\ ^T)\cdot \bold F\\\\ &=\bold F^T\cdot(\vec{a}\triangledown-\triangledown\vec{a})\cdot \bold F \\\\ &=2\bold F^T\cdot\bold J\cdot \bold F \end{aligned} F TF+FTF∙∙F∙∙ TFF TF=FTF∙∙F∙∙ TF=FT(F∙∙F1FTF∙∙ T)F=FT(a a )F=2FTJF
比较两式得:
J = W ∙ + D ⋅ W + W ⋅ D \bold J=\overset{\bullet}{\bold W}+\bold D\cdot\bold W+\bold W\cdot\bold D J=W+DW+WD

3. Lagrange-Cauchy 定理

[Lagrange-Cauchy 定理] \quad 对于加速度为势的梯度的运动,若某一时刻运动是无旋的,则运动始终是无旋的。

证明:由于加速度为势的梯度,则
a ⃗ = ▽ α ( x ⃗ , t ) \vec{a}=\triangledown\alpha(\vec{x},t) a =α(x ,t)
那么
( ▽ α ) ▽ = ∂ ∂ x j ( ∂ α ∂ x i ) g ⃗ i ⊗ g ⃗ j ▽ ( ▽ α ) = ∂ ∂ x j ( ∂ α ∂ x i ) g ⃗ j ⊗ g ⃗ i = ∂ ∂ x i ( ∂ α ∂ x j ) g ⃗ i ⊗ g ⃗ j ( ▽ α ) ▽ = ▽ ( ▽ α ) \begin{aligned} &(\triangledown\alpha)\triangledown =\dfrac{\partial }{\partial x^j}\left(\dfrac{\partial\alpha}{\partial x^i}\right)\vec{g}^i\otimes\vec{g}^j \\\\ &\triangledown(\triangledown\alpha) =\dfrac{\partial }{\partial x^j}\left(\dfrac{\partial\alpha}{\partial x^i}\right)\vec{g}^j\otimes\vec{g}^i =\dfrac{\partial }{\partial x^i}\left(\dfrac{\partial\alpha}{\partial x^j}\right)\vec{g}^i\otimes\vec{g}^j \\\\ & (\triangledown\alpha)\triangledown=\triangledown(\triangledown\alpha) \end{aligned} (α)=xj(xiα)g ig j(α)=xj(xiα)g jg i=xi(xjα)g ig j(α)=(α)
则,加速度梯度的反对称部分为
J = ( ▽ α ) ▽ − ▽ ( ▽ α ) 2 = 0 \bold J =\dfrac{(\triangledown\alpha)\triangledown-\triangledown(\triangledown\alpha)}{2} =0 J=2(α)(α)=0
那么
D D t ( F T ⋅ W ⋅ F ) = F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F = F T ⋅ J ⋅ F = 0 \dfrac{D}{Dt}(\bold F^T\cdot\bold W\cdot\bold F) ={\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F ={\bold F}^T\cdot\bold J\cdot\bold F=0 DtD(FTWF)=FT(DW+W+WD)F=FTJF=0
若运动某一时刻无旋,即某一时刻 W = 0 \bold W=0 W=0,则运动过程中始终有:
F T ⋅ W ⋅ F = 0 \bold F^T\cdot\bold W\cdot\bold F=0 FTWF=0
由于 F \bold F F 正则,故在运动过程中始终有:
W = 0 \bold W=0 W=0
即,运动始终无旋。

命题 \quad 若速度场为势的梯度,则加速度场也为势的梯度

证明:由于速度有势,则
v ⃗ = ▽ φ ( x ⃗ , t ) \vec{v}=\triangledown\varphi(\vec{x},t) v =φ(x ,t)
那么
a ⃗ = v ⃗ ∙ = ▽ φ ∙ = ( ▽ φ ) ′ + ( v ⃗ ▽ ) ⋅ v ⃗ \vec{a} =\overset{\bullet}{\vec{v}} =\overset{\bullet}{\triangledown\varphi} =(\triangledown\varphi)'+(\vec{v}\triangledown)\cdot\vec{v} a =v =φ=(φ)+(v )v
由于
( ▽ × v ⃗ ) × v ⃗ = ( v ⃗ ▽ − ▽ v ⃗ ) ⋅ v ⃗ = v ⃗ ▽ ⋅ v ⃗ − ▽ v ⃗ ⋅ v ⃗   ▽ v ⃗ ⋅ v ⃗ = ▽ ( v ⃗ ⋅ v ⃗ 2 )   ▽ × v ⃗ = ▽ × ( ▽ φ ) = ∂ 2 φ ∂ x i ∂ x j ϵ i j k g ⃗ k = 0 (\triangledown\times\vec{v})\times\vec{v} =(\vec{v}\triangledown-\triangledown\vec{v})\cdot\vec{v} =\vec{v}\triangledown\cdot\vec{v}-\triangledown\vec{v}\cdot\vec{v}\\\ \\ \triangledown\vec{v}\cdot\vec{v} =\triangledown\left(\dfrac{\vec{v}\cdot\vec{v}}{2}\right) \\\ \\ \triangledown\times\vec{v} =\triangledown\times(\triangledown\varphi) =\dfrac{\partial^2\varphi}{\partial x^i\partial x^j}\epsilon^{ijk}\vec{g}_k=0 (×v )×v =(v v )v =v v v v  v v =(2v v ) ×v =×(φ)=xixj2φϵijkg k=0

a ⃗ = ▽ ( φ ′ + v ⃗ ⋅ v ⃗ 2 ) \vec{a}=\triangledown\left(\varphi'+\dfrac{\vec{v}\cdot\vec{v}}{2}\right) a =(φ+2v v )
证毕。

4. 涡旋传输定理

5. 变形率 D \bold D D 与物质旋率 W \bold W W 的几何意义

5.1. 线元的物质导数与相关的相对变化率

由于任意线元 d x ⃗ d\vec{x} dx 的物质导数为:
D D t ( d x ⃗ ) = D D t ( F ⋅ d X ⃗ ) = F ∙ ⋅ X ⃗ = ( F ∙ ⋅ F − 1 ) ⋅ ( F ⋅ d X ⃗ ) = L ⋅ d x ⃗ \dfrac{D}{Dt}(d\vec{x}) =\dfrac{D}{Dt}(\bold F\cdot d\vec{X}) =\overset{\bullet}{\bold F}\cdot\vec{X} =(\overset{\bullet}{\bold F}\cdot\bold F^{-1})\cdot(\bold F\cdot d\vec{X}) =\bold L\cdot d\vec{x} DtD(dx )=DtD(FdX )=FX =(FF1)(FdX )=Ldx

5.1.1. 线元长度的相对变化率

任意线元 d x ⃗ d\vec{x} dx 长度 ∣ d x ⃗ ∣ |d\vec{x}| dx 的物质导数为:
D D t ( ∣ d x ⃗ ∣ ) = D D t d x ⃗ ⋅ d x ⃗ = 1 2 ∣ d x ⃗ ∣ [ D D t ( d x ⃗ ) ⋅ d x ⃗ + d x ⃗ ⋅ D D t ( d x ⃗ ) ] = 1 ∣ d x ⃗ ∣ ( d x ⃗ ⋅ L T + L 2 ⋅ d x ⃗ ) = 1 ∣ d x ⃗ ∣ ( d x ⃗ ⋅ D ⋅ d x ⃗ ) = l ⃗ ⋅ ( D ⋅ d x ⃗ ) \begin{aligned} &\dfrac{D}{Dt}(|d\vec{x}|) =\dfrac{D}{Dt}\sqrt{d\vec{x}\cdot d\vec{x}} =\dfrac{1}{2|d\vec{x}|}\left[\dfrac{D}{Dt}(d\vec{x})\cdot d\vec{x}+d\vec{x}\cdot\dfrac{D}{Dt}(d\vec{x})\right]\\\\ &\qquad\qquad=\dfrac{1}{|d\vec{x}|}\left(d\vec{x}\cdot\dfrac{\bold L^T+\bold L}{2}\cdot d\vec{x}\right) =\dfrac{1}{|d\vec{x}|}\left(d\vec{x}\cdot\bold D\cdot d\vec{x}\right) =\vec{l}\cdot(\bold D\cdot d\vec{x}) \end{aligned} DtD(dx )=DtDdx dx =2∣dx 1[DtD(dx )dx +dx DtD(dx )]=dx 1(dx 2LT+Ldx )=dx 1(dx Ddx )=l (Ddx )
可理解为 D ⋅ d x ⃗ \bold D\cdot d\vec{x} Ddx l ⃗ \vec{l} l 上的投影。故沿单位切向量 l ⃗ \vec{l} l 的线元 d x ⃗ d\vec{x} dx 的长度的相对变化率 d l d_l dl 为:
d l ⃗ ≜ ∣ d x ⃗ ∣ ∙ ∣ d x ⃗ ∣ = d x ⃗ ∣ d x ⃗ ∣ ⋅ D ⋅ d x ⃗ ∣ d x ⃗ ∣ = l ⃗ ⋅ D ⋅ l ⃗ d_{\vec{l}} \triangleq\dfrac{\overset{\bullet}{|d\vec{x}|}}{|d\vec{x}|} =\dfrac{d\vec{x}}{|d\vec{x}|}\cdot\bold D\cdot \dfrac{d\vec{x}}{|d\vec{x}|} =\vec{l}\cdot\bold D\cdot\vec{l} dl dx dx =dx dx Ddx dx =l Dl

进一步讨论,在当前时刻什么方向上使得线元的长度相对变化率最大?即求解
{ max ⁡ l ⃗   ( l ⃗ ⋅ D ⋅ l ⃗ ) ∣ l ⃗ ∣ = 1 \begin{cases} \max\limits_{\vec l}\ (\vec{l}\cdot\bold D\cdot\vec{l})\\\\ |\vec{l}|=1 \end{cases} l max (l Dl )l =1
采用 Lagrange 乘子法进行求解,使得问题化为如下无约束极值问题的必要条件:
{ ∂ ∂ l k [ l i l j D i j − η ( l i l j g i j − 1 ) ] = 0 l i l i − 1 = 0 \begin{cases} \dfrac{\partial}{\partial l^k}[l^il^jD_{ij}-\eta(l^il^jg_{ij}-1)]=0\\\\ l^il_i-1=0 \end{cases} lk[liljDijη(liljgij1)]=0lili1=0

{ ( D i k − η g i k ) l i = 0 l i l j g i j − 1 = 0 ⟹ { ( D ∙ k i − η δ ∙ k i ) l i = 0 l i l j g i j − 1 = 0 \begin{cases} (D_{ik}-\eta g_{ik})l^i=0\\\\ l^il^jg_{ij}-1=0 \end{cases} \Longrightarrow \begin{cases} (D^i_{\bullet k}-\eta \delta^i_{\bullet k})l_i=0\\\\ l^il^jg_{ij}-1=0 \end{cases} (Dikηgik)li=0liljgij1=0 (Dkiηδki)li=0liljgij1=0
其求解等价于求解 D \bold D D 的特征值与单位特征向量问题:
( D − η I ) l ⃗ = 0 (\bold D-\eta\bold I)\vec{l}=0 (DηI)l =0
由于 D \bold D D 是对称张量,故存在三个实特征值 d α ( α = 1 , 2 , 3 ) d_{\alpha}(\alpha=1,2,3) dα(α=1,2,3) 并总可以找到两两垂直的单位特征方向 v ⃗ α ( α = 1 , 2 , 3 ) \vec{v}_\alpha(\alpha=1,2,3) v α(α=1,2,3)。且
d v ⃗ α = v ⃗ α ⋅ ( D ⋅ v ⃗ α ) = v ⃗ α ⋅ ( d α v ⃗ α ) = d α ( α = 1 , 2 , 3 ) d_{\vec{v}_\alpha}=\vec{v}_\alpha\cdot(\bold D\cdot\vec{v}_\alpha)=\vec{v}_\alpha\cdot(d_{\alpha}\vec{v}_\alpha)=d_\alpha\quad(\alpha=1,2,3) dv α=v α(Dv α)=v α(dαv α)=dα(α=1,2,3)

上述讨论实际上说明:在各时刻,线元长度的相对变化率取极值(驻值)的方向为伸长率张量的主方向,长度相对变化率的大小为伸长率张量的对应的驻值。

5.1.2. 线元方向的变化率 (与 W 相关)

考虑线元 d x ⃗ d\vec{x} dx 单位切向量 l ⃗ \vec{l} l 的物质导数:
D   l ⃗ D t = D D t ( d x ⃗ ∣ d x ⃗ ∣ ) = 1 ∣ d x ⃗ ∣ D D t ( d x ⃗ ) − d x ⃗ ∣ d x ⃗ ∣ 2 D D t ( ∣ d x ⃗ ∣ ) = L ⋅ d x ⃗ ∣ d x ⃗ ∣ − d x ⃗ ∣ d x ⃗ ∣ ( l ⃗ ⋅ D ⋅ l ⃗ ) = ( L − d l ⃗ I ) ⋅ l ⃗ \begin{aligned} &\dfrac{D\ \vec{l}}{Dt} =\dfrac{D}{Dt}\left(\dfrac{d\vec{x}}{|d\vec{x}|}\right) =\dfrac{1}{|d\vec{x}|}\dfrac{D}{Dt}(d\vec{x})-\dfrac{d\vec{x}}{|d\vec{x}|^2}\dfrac{D}{Dt}(|d\vec{x}|)\\\\ &\qquad\qquad\qquad\qquad=\bold L\cdot\dfrac{d\vec{x}}{|d\vec{x}|}-\dfrac{d\vec{x}}{|d\vec{x}|}(\vec{l}\cdot\bold D\cdot\vec{l})\\\\ &\qquad\qquad\qquad\qquad=(\bold L-d_{\vec{l}}\bold I)\cdot\vec{l} \end{aligned} DtD l =DtD(dx dx )=dx 1DtD(dx )dx 2dx DtD(dx )=Ldx dx dx dx (l Dl )=(Ldl I)l
其中, d l ⃗ d_{\vec{l}} dl l ⃗ \vec{l} l 方向线元长度的相对变化率。又
D   l ⃗ D t ⋅ l ⃗ = l ⃗ ⋅ ( L − d l ⃗ I ) ⋅ l ⃗ = l ⃗ ⋅ ( L − D ) ⋅ l ⃗ = l ⃗ ⋅ W ⋅ l ⃗ = 0 \dfrac{D\ \vec{l}}{Dt}\cdot\vec{l} =\vec{l}\cdot(\bold L-d_{\vec{l}}\bold I)\cdot\vec{l} =\vec{l}\cdot(\bold L-\bold D)\cdot\vec{l} =\vec{l}\cdot\bold W\cdot\vec{l}=0 DtD l l =l (Ldl I)l =l (LD)l =l Wl =0
由于物质旋率张量是反对称张量。这也说明了单位切向量的物质导数与自身垂直的几何含义

5.1.3. 线元夹角余弦的变化率

在当前时刻,存在两线元 d x ⃗ ( 1 ) d\vec{x}_{(1)} dx (1) d x ⃗ ( 2 ) d\vec{x}_{(2)} dx (2),其单位切向量分别为: l ⃗ ( 1 ) 、 l ⃗ ( 2 ) \vec{l}_{(1)}、\vec{l}_{(2)} l (1)l (2),夹角为: θ \theta θ。那么
D D t ( c o s θ ) = D D t ( l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) ) = l ⃗ ( 1 ) ⋅ D   l ⃗ ( 2 ) D t + D   l ⃗ ( 1 ) D t ⋅ l ⃗ ( 2 ) = l ⃗ ( 1 ) ⋅ ( L − d l ⃗ ( 2 ) I ) ⋅ l ⃗ ( 2 ) + ( L − d l ⃗ ( 1 ) I ) ⋅ l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) = l ⃗ ( 1 ) ⋅ ( L − d l ⃗ ( 2 ) I ) ⋅ l ⃗ ( 2 ) + l ⃗ ( 1 ) ⋅ ( L T − d l ⃗ ( 1 ) I ) ⋅ l ⃗ ( 2 ) = 2 l ⃗ ( 1 ) ⋅ D ⋅ l ⃗ ( 2 ) − ( d l ⃗ ( 1 ) + d l ⃗ ( 1 ) ) l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) \begin{aligned} &\quad\dfrac{D}{Dt}(cos\theta) =\dfrac{D}{Dt}(\vec{l}_{(1)}\cdot\vec{l}_{(2)})\\\\ &=\vec{l}_{(1)}\cdot\dfrac{D\ \vec{l}_{(2)}}{Dt}+\dfrac{D\ \vec{l}_{(1)}}{Dt}\cdot\vec{l}_{(2)}\\\\ &=\vec{l}_{(1)}\cdot\left(\bold L-d_{\vec{l}_{(2)}}\bold I\right)\cdot\vec{l}_{(2)}+\left(\bold L-d_{\vec{l}_{(1)}}\bold I\right)\cdot\vec{l}_{(1)}\cdot\vec{l}_{(2)}\\\\ &=\vec{l}_{(1)}\cdot\left(\bold L-d_{\vec{l}_{(2)}}\bold I\right)\cdot\vec{l}_{(2)}+\vec{l}_{(1)}\cdot\left(\bold L^T-d_{\vec{l}_{(1)}}\bold I\right)\cdot\vec{l}_{(2)}\\\\ &=2\vec{l}_{(1)}\cdot\bold D\cdot\vec{l}_{(2)}-\left(d_{\vec{l}_{(1)}}+d_{\vec{l}_{(1)}}\right)\vec{l}_{(1)}\cdot\vec{l}_{(2)} \end{aligned} DtD(cosθ)=DtD(l (1)l (2))=l (1)DtD l (2)+DtD l (1)l (2)=l (1)(Ldl (2)I)l (2)+(Ldl (1)I)l (1)l (2)=l (1)(Ldl (2)I)l (2)+l (1)(LTdl (1)I)l (2)=2l (1)Dl (2)(dl (1)+dl (1))l (1)l (2)
特别地,若考虑 θ = 90 ° \theta=90\degree θ=90°,则
D D t ( c o s θ ) ∣ θ = 90 ° = − D θ D t ∣ θ = 90 ° = 2 l ⃗ ( 1 ) ⋅ D ⋅ l ⃗ ( 2 ) \left.\dfrac{D}{Dt}(cos\theta)\right|_{\theta=90\degree}=-\left.\dfrac{D\theta}{Dt}\right|_{\theta=90\degree}=2\vec{l}_{(1)}\cdot\bold D\cdot\vec{l}_{(2)} DtD(cosθ) θ=90°=DtDθ θ=90°=2l (1)Dl (2)

5.2. 体元的物质导数与与其相对变化率

5.2.1. 体元的物质导数与与其相对变化率

由于
D D t ( d v ) = D D t ( J d v 0 ) = J ∙ d v 0 = ▽ ⋅ v ⃗ J d v 0 = ▽ ⋅ v ⃗ d v \dfrac{D}{Dt}(dv) =\dfrac{D}{Dt}(\mathscr J dv_0) =\overset{\bullet}{\mathscr J}dv_0 =\triangledown\cdot\vec{v}{\mathscr J}dv_0 =\triangledown\cdot\vec{v}dv DtD(dv)=DtD(Jdv0)=Jdv0=v Jdv0=v dv

▽ ⋅ v ⃗ = v i ∣ i = t r ( v ⃗ ⊗ ▽ ) = t r ( L ) = t r ( D ) \triangledown\cdot\vec{v} =v^i|_i =tr(\vec{v}\otimes\triangledown) =tr(\bold L) =tr(\bold D) v =vii=tr(v )=tr(L)=tr(D)
任意体元 d v dv dv 的物质导数为:
D D t ( d v ) = t r ( D ) d v \dfrac{D}{Dt}(dv)=tr(\bold D)dv DtD(dv)=tr(D)dv
体元的相对变化率为:
d v ∙ d v = t r ( D ) \dfrac{\overset{\bullet}{dv}}{dv}=tr(\bold D) dvdv=tr(D)

5.2.2 体元物质导数的另一种表达

对任意仿射量 F 、 B \bold {F、B} FB 与 实数 δ \delta δ, 记
F ^ = F + δ B \bold{\hat{F}}=\bold F +\delta\bold B F^=F+δB

J ^ ≜ d e t ( F ^ ) = d e t ( F + δ B ) = d e t ( F ) d e t ( I + δ B F − 1 ) \hat{\mathscr J}\triangleq det(\bold{\hat{F}}) =det(\bold F +\delta\bold B) =det(\bold F)det(\bold I+\delta\bold B\bold F^{-1}) J^det(F^)=det(F+δB)=det(F)det(I+δBF1)
进一步有:
D J ^ D δ ∣ δ = 0 = d e t ( F ) t r ( B F − 1 ) \left.\dfrac{D\hat{\mathscr J}}{D\delta}\right|_{\delta=0} =det(\bold F)tr(\bold B\bold F^{-1}) DJ^ δ=0=det(F)tr(BF1)
上式运用了特征多项式展开的相关性质。得到上述结论后,令上式中 F \bold F F 代表变形梯度,且
δ = t , B = F ∙ \delta= t,\bold B=\overset{\bullet}{\bold F} δ=tB=F
则有:
D   d e t ( F + t F ∙ ) D t ∣ t = 0 = J t r L = J t r D \left.\dfrac{D\ det(\bold F +t\overset{\bullet}{\bold F})}{Dt}\right|_{t=0}=\mathscr{J}tr{\bold L}=\mathscr{J}tr{\bold D} DtD det(F+tF) t=0=JtrL=JtrD

[ D   d e t ( F + t F ∙ ) D t ∣ t = 0 ] d v 0 = t r ( D ) d v = d v ∙ \left[\left.\dfrac{D\ det(\bold F +t\overset{\bullet}{\bold F})}{Dt}\right|_{t=0}\right]dv_0 =tr(\bold D)dv =\overset{\bullet}{dv} DtD det(F+tF) t=0 dv0=tr(D)dv=dv

5.3. 有向面元的物质导数与其面积的相对变化率

由于
D D t ( N ⃗ d S ) = D D t ( J F − T ⋅ 0 N ⃗ d S 0 ) = D D t ( J F − T ) ⋅ 0 N ⃗ d S 0    = [ t r ( D ) ( J F − T ) + J ( F ∙   − 1 ) T ) ] ⋅ 0 N ⃗ d S 0 \begin{aligned} &\dfrac{D}{Dt}(\vec{N}dS) =\dfrac{D}{Dt}(\mathscr J\bold F^{-T}\cdot{_0}\vec{N} dS_0) =\dfrac{D}{Dt}(\mathscr J\bold F^{-T})\cdot{_0}\vec{N} dS_0\\\\ &\qquad\qquad\ \ =[tr(\bold D)(\mathscr J\bold F^{-T})+\mathscr J(\overset{\bullet}{\bold F}\ ^{-1})^T)]\cdot{_0}\vec{N} dS_0 \end{aligned} DtD(N dS)=DtD(JFT0N dS0)=DtD(JFT)0N dS0  =[tr(D)(JFT)+J(F 1)T)]0N dS0

D D t ( F ⋅ F − 1 ) = F ∙ ⋅ F − 1 + F ⋅ F ∙   − 1 = 0   F ∙   − 1 = − F − 1 ⋅ F ∙ ⋅ F − 1 = − F − 1 ⋅ L \dfrac{D}{Dt}(\bold F\cdot\bold F^{-1}) =\overset{\bullet}{\bold F}\cdot\bold F^{-1}+\bold F\cdot\overset{\bullet}{\bold F}\ ^{-1}=0\\\ \\ \overset{\bullet}{\bold F}\ ^{-1}=-{\bold F}^{-1}\cdot\overset{\bullet}{\bold F}\cdot{\bold F}^{-1}=-{\bold F}^{-1}\cdot\bold L DtD(FF1)=FF1+FF 1=0 F 1=F1FF1=F1L
任意有向线元的物质导数为:
D D t ( N ⃗ d S ) = [ t r ( D ) ( J F − T ) − L T ⋅ ( J F − T ) ] ⋅ 0 N ⃗ d S 0 = [ t r ( D ) I − L T ] ⋅ N ⃗ d S \dfrac{D}{Dt}(\vec{N}dS) =[tr(\bold D)(\mathscr J\bold F^{-T})-\bold L^T\cdot(\mathscr J\bold F^{-T})]\cdot{_0}\vec{N} dS_0 =[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS DtD(N dS)=[tr(D)(JFT)LT(JFT)]0N dS0=[tr(D)ILT]N dS
进一步,微元面积的物质导数为:
D   d S D t = D D t N ⃗ d S ⋅ N ⃗ d S     = 1 2 d S { [ t r ( D ) I − L T ] ⋅ N ⃗ d S ⋅ N ⃗ d S + N ⃗ d S ⋅ [ t r ( D ) I − L T ] ⋅ N ⃗ d S }     = 1 2 d S { N ⃗ d S ⋅ [ t r ( D ) I − L ] ⋅ N ⃗ d S + N ⃗ d S ⋅ [ t r ( D ) I − L T ] ⋅ N ⃗ d S }     = 1 d S [ t r ( D ) ( d S ) 2 − N ⃗ d S ⋅ L + L T 2 ⋅ N ⃗ d S ]     = d S [ t r ( D ) − N ⃗ ⋅ D ⋅ N ⃗ ] \begin{aligned} &\dfrac{D\ dS}{Dt} =\dfrac{D}{Dt}\sqrt{\vec{N}dS\cdot\vec{N}dS}\\\\ &\ \qquad\ =\dfrac{1}{2dS}\left\{[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\cdot\vec{N}dS+\vec{N} dS\cdot[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\right\}\\\\ &\ \qquad\ =\dfrac{1}{2dS}\left\{\vec{N}dS\cdot[tr(\bold D)\bold I-\bold L]\cdot\vec{N}dS+\vec{N} dS\cdot[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\right\}\\\\ &\ \qquad\ =\dfrac{1}{dS}\left[tr(\bold D)(dS)^2-\vec{N} dS\cdot\dfrac{\bold L+\bold L^T}{2}\cdot\vec{N} dS\right]\\\\ &\ \qquad\ =dS\left[tr(\bold D)-\vec{N}\cdot\bold D\cdot\vec{N}\right] \end{aligned} DtD dS=DtDN dSN dS   =2dS1{[tr(D)ILT]N dSN dS+N dS[tr(D)ILT]N dS}  =2dS1{N dS[tr(D)IL]N dS+N dS[tr(D)ILT]N dS}  =dS1[tr(D)(dS)2N dS2L+LTN dS]  =dS[tr(D)N DN ]
那么,任意有向面元 N ⃗ d S \vec{N}dS N dS 面积的相对变化率为:
d S ∙ d S = t r ( D ) − N ⃗ ⋅ D ⋅ N ⃗ = t r ( D ) − d N ⃗ \dfrac{\overset{\bullet}{dS}}{dS} =tr(\bold D)-\vec{N}\cdot\bold D\cdot\vec{N} =tr(\bold D)-d_{\vec{N}} dSdS=tr(D)N DN =tr(D)dN

5.4. 物质旋率张量 W 的几何意义

当前时刻,伸长率张量 D \bold D D 的单位特征向量为: v ⃗ α ( α = 1 , 2 , 3 ) \vec{v}_\alpha(\alpha=1,2,3) v α(α=1,2,3) ,对应的特征值分别为: d α ( α = 1 , 2 , 3 ) d_\alpha(\alpha=1,2,3) dα(α=1,2,3),考虑沿当前 v ⃗ α \vec{v}_\alpha v α 方向的线元的方向变化率:
l ⃗ ∙ ( v ⃗ α ) = l ⃗ ∙ ∣ l ⃗ = v ⃗ α \overset{\bullet}{\vec{l}}(\vec{v}_\alpha)=\overset{\bullet}{\vec{l}}|_{\vec{l}=\vec{v}_\alpha} l (v α)=l l =v α
需要注意的是:
l ⃗ ∙ ( v ⃗ α ) ≠ v ⃗ α ∙ \overset{\bullet}{\vec{l}}(\vec{v}_\alpha)\ne\overset{\bullet}{\vec{v}_\alpha} l (v α)=v α
因为对线元的单位方向的物质导数表示研究的始终是同一线元,但前一时刻与下一时刻伸长率张量的特征向量可能与不同线元相重合。
l ⃗ ∙ ( v ⃗ α ) = ( L − d α I ) ⋅ v ⃗ α = ( L − D ) ⋅ v ⃗ α = W ⋅ v ⃗ α = ω ⃗ × v ⃗ α \overset{\bullet}{\vec{l}}(\vec{v}_\alpha) =(\bold L-d_{\alpha}\bold I)\cdot\vec{v}_{\alpha} =(\bold L-\bold D)\cdot\vec{v}_{\alpha} =\bold W\cdot\vec{v}_{\alpha} =\vec{\omega}\times\vec{v}_{\alpha} l (v α)=(LdαI)v α=(LD)v α=Wv α=ω ×v α
这表明:物质旋率张量是当前时刻与伸长率张量特征方向相重合的物质线元的转动速率张量。另外
D D t ( d x ⃗ ) = L ⋅ d x ⃗ = ∂ v ⃗ ∂ x i d x i = d v ⃗ = D ⋅ d x ⃗ + W ⋅ d x ⃗ \dfrac{D}{Dt}(d\vec{x}) =\bold L\cdot d\vec{x}=\dfrac{\partial\vec{v}}{\partial x^i}dx^i=d\vec{v} =\bold{D}\cdot d\vec{x}+\bold{W}\cdot d\vec{x} DtD(dx )=Ldx =xiv dxi=dv =Ddx +Wdx

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐