(六)速度梯度与加速度梯度
对于速度场 v⃗=v⃗(x⃗,t)=vig⃗i\vec{v}=\vec{v}(\vec{x},t)=v^i\vec{g}_iv=v(x,t)=vigi,其右梯度 (称作速度梯度) 可写作v⃗▽=∂v⃗∂xj⊗g⃗ j=vi∣jg⃗i⊗g⃗j≜L=∂v⃗∂XA∂XA∂xj⊗g⃗ j=∂v⃗∂XA⊗C⃗A=vB∣∣AC⃗B⊗C⃗A=C⃗∙A⊗C⃗A=(C⃗∙B⊗G⃗B)⋅(G⃗A⊗C⃗A)=F∙⋅
本文主要内容包括:
1. 速度梯度、变形率张量与物质旋律张量
对于速度场
v
⃗
=
v
⃗
(
x
⃗
,
t
)
=
v
i
g
⃗
i
\vec{v}=\vec{v}(\vec{x},t)=v^i\vec{g}_i
v=v(x,t)=vigi,其右梯度 (称作速度梯度) 可写作
v
⃗
▽
=
∂
v
⃗
∂
x
j
⊗
g
⃗
j
=
v
i
∣
j
g
⃗
i
⊗
g
⃗
j
≜
L
=
∂
v
⃗
∂
X
A
∂
X
A
∂
x
j
⊗
g
⃗
j
=
∂
v
⃗
∂
X
A
⊗
C
⃗
A
=
v
B
∣
∣
A
C
⃗
B
⊗
C
⃗
A
=
C
⃗
∙
A
⊗
C
⃗
A
=
(
C
⃗
∙
B
⊗
G
⃗
B
)
⋅
(
G
⃗
A
⊗
C
⃗
A
)
=
F
∙
⋅
F
−
1
\begin{aligned} & \vec{v}\triangledown =\dfrac{\partial \vec{v}}{\partial x^j}\otimes\vec{g}\ ^j =v^i|_j\vec{g}_i\otimes\vec{g}^j\triangleq\bold L\\\\ &\ \ \ \ \ =\dfrac{\partial \vec{v}}{\partial X^A}\dfrac{\partial X^A}{\partial x^j}\otimes\vec{g}\ ^j =\dfrac{\partial \vec{v}}{\partial X^A}\otimes\vec{C}^A =v^B||_A\vec{C}_B\otimes\vec{C}^A =\overset{\bullet}{\vec{C}}_A\otimes\vec{C}^A \\\\ &\ \ \ \ \ =(\overset{\bullet}{\vec{C}}_B\otimes\vec{G}^B)\cdot(\vec{G}_A\otimes\vec{C}^A) =\overset{\bullet}{\bold F}\cdot\overset{-1}{\bold F} \end{aligned}
v▽=∂xj∂v⊗g j=vi∣jgi⊗gj≜L =∂XA∂v∂xj∂XA⊗g j=∂XA∂v⊗CA=vB∣∣ACB⊗CA=C∙A⊗CA =(C∙B⊗GB)⋅(GA⊗CA)=F∙⋅F−1
将速度梯度的对称部分称作变形率张量:
D
=
1
2
(
L
+
L
T
)
=
1
2
(
v
⃗
▽
+
▽
v
⃗
)
\bold D=\dfrac{1}{2}(\bold L+\bold L^T)=\dfrac{1}{2}(\vec{v}\triangledown+\triangledown\vec{v})
D=21(L+LT)=21(v▽+▽v)
将速度梯度的反对称部分称作物质旋率张量:
W
=
1
2
(
L
−
L
T
)
=
1
2
(
v
⃗
▽
−
▽
v
⃗
)
\bold W=\dfrac{1}{2}(\bold L-\bold L^T)=\dfrac{1}{2}(\vec{v}\triangledown-\triangledown\vec{v})
W=21(L−LT)=21(v▽−▽v)
其轴向量为:
ω
⃗
=
1
2
(
▽
×
v
⃗
)
\vec{\omega}=\dfrac{1}{2}(\triangledown\times\vec{v})
ω=21(▽×v)
此外还可以表示为:
ω
⃗
=
−
1
4
ϵ
:
(
C
⃗
∙
A
⊗
C
⃗
A
−
C
⃗
A
⊗
C
⃗
∙
A
)
=
1
2
C
⃗
A
×
C
⃗
∙
A
\vec{\omega}=-\dfrac{1}{4}\epsilon:(\overset{\bullet}{\vec{C}}_A\otimes\vec{C}^A -\vec{C}^A\otimes\overset{\bullet}{\vec{C}}_A ) =\dfrac{1}{2}\vec{C}^A\times\overset{\bullet}{\vec{C}}_A
ω=−41ϵ:(C∙A⊗CA−CA⊗C∙A)=21CA×C∙A
定义 处处满足
w
⃗
=
0
\vec{w}=0
w=0 或
W
=
0
\bold W=0
W=0 的运动称为无旋运动。
2. 加速度梯度
加速度为:
a
⃗
=
v
⃗
∙
=
v
⃗
′
+
(
v
⃗
▽
)
⋅
v
⃗
=
v
⃗
′
+
L
⋅
v
⃗
=
v
⃗
′
+
(
D
+
W
)
⋅
v
⃗
=
v
⃗
′
+
D
⋅
v
⃗
+
ω
⃗
×
v
⃗
=
v
⃗
′
+
1
2
▽
(
v
⃗
⋅
v
⃗
)
+
2
W
⋅
v
⃗
\begin{aligned} &\vec{a} =\overset{\bullet}{\vec{v}} =\vec{v}'+(\vec{v}\triangledown)\cdot\vec{v} \\\\ &\ \ =\vec{v}'+\bold{L}\cdot\vec{v}=\vec{v}'+\bold{(D+W)}\cdot\vec{v}\\\\ &\ \ =\vec{v}'+\bold{D}\cdot\vec{v}+\vec{\omega}\times\vec{v} \\\\ &\ \ =\vec{v}'+\dfrac{1}{2}\triangledown(\vec{v}\cdot\vec{v})+2\bold{W}\cdot\vec{v} \end{aligned}
a=v∙=v′+(v▽)⋅v =v′+L⋅v=v′+(D+W)⋅v =v′+D⋅v+ω×v =v′+21▽(v⋅v)+2W⋅v
其中,最后一式是由于
W
⋅
v
⃗
=
w
⃗
×
v
⃗
=
1
2
(
▽
×
v
⃗
)
×
v
⃗
=
1
2
(
v
⃗
▽
−
▽
v
⃗
)
⋅
v
⃗
=
1
2
(
L
⋅
v
⃗
−
▽
v
⃗
⋅
v
⃗
)
=
1
2
[
L
⋅
v
⃗
−
1
2
▽
(
v
⃗
⋅
v
⃗
)
]
\bold{W}\cdot\vec{v} =\vec{w}\times\vec{v} =\dfrac{1}{2}(\triangledown\times\vec{v})\times\vec{v} =\dfrac{1}{2}(\vec{v}\triangledown-\triangledown\vec{v})\cdot\vec{v} =\dfrac{1}{2}(\bold L\cdot\vec{v}-\triangledown\vec{v}\cdot\vec{v}) =\dfrac{1}{2}[\bold L\cdot\vec{v}-\dfrac{1}{2}\triangledown(\vec{v}\cdot\vec{v})]
W⋅v=w×v=21(▽×v)×v=21(v▽−▽v)⋅v=21(L⋅v−▽v⋅v)=21[L⋅v−21▽(v⋅v)]
加速度的 (右) 梯度 定义为:
a
⃗
▽
=
∂
a
⃗
∂
x
i
⊗
g
⃗
i
=
∂
a
⃗
∂
X
A
⊗
C
⃗
A
=
a
B
∣
∣
A
C
⃗
B
⊗
C
⃗
A
=
C
⃗
∙
∙
A
⊗
C
⃗
A
=
(
C
⃗
∙
∙
A
⊗
G
⃗
A
)
⋅
(
G
⃗
B
⊗
C
⃗
B
)
=
F
∙
∙
⋅
F
−
1
\begin{aligned} & \vec{a}\triangledown =\dfrac{\partial \vec{a}}{\partial x^i}\otimes\vec{g}^i =\dfrac{\partial \vec{a}}{\partial X^A}\otimes\vec{C}^A =a^B||_A\vec{C}_B\otimes\vec{C}^A\\\\ &\quad\ =\overset{\bullet\bullet}{\vec{C}}_A\otimes\vec{C}^A =(\overset{\bullet\bullet}{\vec{C}}_A\otimes\vec{G}^A)\cdot(\vec{G}_B\otimes\vec{C}^B) =\overset{\bullet\bullet}{\bold F}\cdot\overset{-1}{\bold F} \end{aligned}
a▽=∂xi∂a⊗gi=∂XA∂a⊗CA=aB∣∣ACB⊗CA =C∙∙A⊗CA=(C∙∙A⊗GA)⋅(GB⊗CB)=F∙∙⋅F−1
继续讨论前,给出如下命题:
对于任意仿射量
Ψ
\Psi
Ψ,有:
(
Ψ
∙
)
T
=
(
Ψ
T
)
∙
\left(\overset{\bullet}{\Psi}\right)^T=\overset{\bullet}{\left(\Psi^T\right)}
(Ψ∙)T=(ΨT)∙
证明:对任意向量
a
⃗
,
b
⃗
\vec{a},\vec{b}
a,b 满足:
a
⃗
⋅
Ψ
⋅
b
⃗
=
b
⃗
⋅
Ψ
T
⋅
a
⃗
\vec{a}\cdot\bold{\Psi}\cdot\vec{b}=\vec{b}\cdot\bold{\Psi}^T\cdot\vec{a}
a⋅Ψ⋅b=b⋅ΨT⋅a
那么,
a
⃗
∙
⋅
Ψ
⋅
b
⃗
+
a
⃗
⋅
Ψ
∙
⋅
b
⃗
+
a
⃗
⋅
Ψ
⋅
b
⃗
∙
=
b
⃗
∙
⋅
(
Ψ
T
)
⋅
a
⃗
+
b
⃗
⋅
(
Ψ
T
)
∙
⋅
a
⃗
+
b
⃗
⋅
(
Ψ
T
)
⋅
a
⃗
∙
\overset{\bullet}{\vec{a}}\cdot\bold{\Psi}\cdot\vec{b} +\vec{a}\cdot\overset{\bullet}{\bold{\Psi}}\cdot\vec{b} +\vec{a}\cdot\bold{\Psi}\cdot\overset{\bullet}{\vec{b}} =\overset{\bullet}{\vec{b}}\cdot(\bold{\Psi}^T)\cdot\vec{a} +\vec{b}\cdot\overset{\bullet}{(\bold{\Psi}^T)}\cdot\vec{a} +\vec{b}\cdot(\bold{\Psi}^T)\cdot\overset{\bullet}{\vec{a}}
a∙⋅Ψ⋅b+a⋅Ψ∙⋅b+a⋅Ψ⋅b∙=b∙⋅(ΨT)⋅a+b⋅(ΨT)∙⋅a+b⋅(ΨT)⋅a∙
则
a
⃗
⋅
Ψ
∙
⋅
b
⃗
=
b
⃗
⋅
(
Ψ
T
)
∙
⋅
a
⃗
⟹
b
⃗
⋅
[
(
Ψ
∙
)
T
−
(
Ψ
T
)
∙
]
⋅
a
⃗
=
0
\vec{a}\cdot\overset{\bullet}{\bold{\Psi}}\cdot\vec{b} =\vec{b}\cdot\overset{\bullet}{(\bold{\Psi}^T)}\cdot\vec{a} \Longrightarrow \vec{b}\cdot\left[\left(\overset{\bullet}{\Psi}\right)^T-\overset{\bullet}{(\bold{\Psi}^T)}\right]\cdot\vec{a} =0
a⋅Ψ∙⋅b=b⋅(ΨT)∙⋅a⟹b⋅[(Ψ∙)T−(ΨT)∙]⋅a=0
由
a
⃗
,
b
⃗
\vec{a},\vec{b}
a,b 的任意性可知命题成立。故此二者可以不加区分运算的先后次序。另外还表明:对称仿射量的物质导数是对称仿射量,反对称仿射量的物质导数为反对称仿射量。
加速度梯度的反对称部分记为:
J
=
1
2
(
a
⃗
▽
−
▽
a
⃗
)
\bold J=\dfrac{1}{2}(\vec{a}\triangledown-\triangledown\vec{a})
J=21(a▽−▽a)
由于恒等式:
2
F
T
⋅
W
⋅
F
=
F
T
⋅
(
F
∙
⋅
F
−
1
−
F
−
T
⋅
F
∙
T
)
⋅
F
=
F
T
⋅
F
∙
−
F
∙
T
⋅
F
2\bold F^T\cdot\bold W\cdot\bold F =\bold F^T\cdot(\overset{\bullet}{\bold F}\cdot\bold F^{-1}-\bold F^{-T}\cdot\overset{\bullet}{\bold F}\ ^T)\cdot\bold F =\bold F^T\cdot\overset{\bullet}{\bold F}-\overset{\bullet}{\bold F}\ ^T\cdot \bold F
2FT⋅W⋅F=FT⋅(F∙⋅F−1−F−T⋅F∙ T)⋅F=FT⋅F∙−F∙ T⋅F
对左侧求物质导数有:
2
[
F
∙
T
⋅
W
⋅
F
+
F
T
⋅
W
∙
⋅
F
+
F
T
⋅
W
⋅
F
∙
]
=
2
F
T
⋅
(
L
T
⋅
W
+
W
∙
+
W
⋅
L
)
⋅
F
=
2
F
T
⋅
(
D
⋅
W
+
W
∙
+
W
⋅
D
)
⋅
F
+
2
F
T
⋅
(
L
T
−
L
2
⋅
W
+
W
⋅
L
−
L
T
2
)
⋅
F
=
2
F
T
⋅
(
D
⋅
W
+
W
∙
+
W
⋅
D
)
⋅
F
+
2
F
T
⋅
(
−
W
2
+
W
2
)
⋅
F
=
2
F
T
⋅
(
D
⋅
W
+
W
∙
+
W
⋅
D
)
⋅
F
\begin{aligned} & \quad 2[\overset{\bullet}{\bold F}\ ^T\cdot\bold W\cdot\bold F+\bold F^T\cdot\overset{\bullet}{\bold W}\cdot\bold F+\bold F^T\cdot\bold W\cdot\overset{\bullet}{\bold F}] \\\\ &=2{\bold F}^T\cdot(\bold L^T\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold L)\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F+2{\bold F}^T\cdot(\dfrac{\bold L^T-\bold L}{2}\cdot\bold W+\bold W\cdot\dfrac{\bold L-\bold L^T}{2})\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F+2{\bold F}^T\cdot(-\bold W^2+\bold W^2)\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F \end{aligned}
2[F∙ T⋅W⋅F+FT⋅W∙⋅F+FT⋅W⋅F∙]=2FT⋅(LT⋅W+W∙+W⋅L)⋅F=2FT⋅(D⋅W+W∙+W⋅D)⋅F+2FT⋅(2LT−L⋅W+W⋅2L−LT)⋅F=2FT⋅(D⋅W+W∙+W⋅D)⋅F+2FT⋅(−W2+W2)⋅F=2FT⋅(D⋅W+W∙+W⋅D)⋅F
对右侧求物质导数:
F
∙
T
⋅
F
∙
+
F
T
⋅
F
∙
∙
−
F
∙
∙
T
⋅
F
−
F
∙
T
⋅
F
∙
=
F
T
⋅
F
∙
∙
−
F
∙
∙
T
⋅
F
=
F
T
⋅
(
F
∙
∙
⋅
F
−
1
−
F
−
T
⋅
F
∙
∙
T
)
⋅
F
=
F
T
⋅
(
a
⃗
▽
−
▽
a
⃗
)
⋅
F
=
2
F
T
⋅
J
⋅
F
\begin{aligned} & \quad \overset{\bullet}{\bold F}\ ^T\cdot\overset{\bullet}{\bold F}+\bold F^T\cdot\overset{\bullet\bullet}{\bold F}-\overset{\bullet\bullet}{\bold F}\ ^T\cdot \bold F-\overset{\bullet}{\bold F}\ ^T\cdot \overset{\bullet}{\bold F} \\\\ &=\bold F^T\cdot\overset{\bullet\bullet}{\bold F}-\overset{\bullet\bullet}{\bold F}\ ^T\cdot \bold F \\\\ &=\bold F^T\cdot(\overset{\bullet\bullet}{\bold F}\cdot\bold F^{-1}-\bold F^{-T}\cdot\overset{\bullet\bullet}{\bold F}\ ^T)\cdot \bold F\\\\ &=\bold F^T\cdot(\vec{a}\triangledown-\triangledown\vec{a})\cdot \bold F \\\\ &=2\bold F^T\cdot\bold J\cdot \bold F \end{aligned}
F∙ T⋅F∙+FT⋅F∙∙−F∙∙ T⋅F−F∙ T⋅F∙=FT⋅F∙∙−F∙∙ T⋅F=FT⋅(F∙∙⋅F−1−F−T⋅F∙∙ T)⋅F=FT⋅(a▽−▽a)⋅F=2FT⋅J⋅F
比较两式得:
J
=
W
∙
+
D
⋅
W
+
W
⋅
D
\bold J=\overset{\bullet}{\bold W}+\bold D\cdot\bold W+\bold W\cdot\bold D
J=W∙+D⋅W+W⋅D
3. Lagrange-Cauchy 定理
[Lagrange-Cauchy 定理] \quad 对于加速度为势的梯度的运动,若某一时刻运动是无旋的,则运动始终是无旋的。
证明:由于加速度为势的梯度,则
a
⃗
=
▽
α
(
x
⃗
,
t
)
\vec{a}=\triangledown\alpha(\vec{x},t)
a=▽α(x,t)
那么
(
▽
α
)
▽
=
∂
∂
x
j
(
∂
α
∂
x
i
)
g
⃗
i
⊗
g
⃗
j
▽
(
▽
α
)
=
∂
∂
x
j
(
∂
α
∂
x
i
)
g
⃗
j
⊗
g
⃗
i
=
∂
∂
x
i
(
∂
α
∂
x
j
)
g
⃗
i
⊗
g
⃗
j
(
▽
α
)
▽
=
▽
(
▽
α
)
\begin{aligned} &(\triangledown\alpha)\triangledown =\dfrac{\partial }{\partial x^j}\left(\dfrac{\partial\alpha}{\partial x^i}\right)\vec{g}^i\otimes\vec{g}^j \\\\ &\triangledown(\triangledown\alpha) =\dfrac{\partial }{\partial x^j}\left(\dfrac{\partial\alpha}{\partial x^i}\right)\vec{g}^j\otimes\vec{g}^i =\dfrac{\partial }{\partial x^i}\left(\dfrac{\partial\alpha}{\partial x^j}\right)\vec{g}^i\otimes\vec{g}^j \\\\ & (\triangledown\alpha)\triangledown=\triangledown(\triangledown\alpha) \end{aligned}
(▽α)▽=∂xj∂(∂xi∂α)gi⊗gj▽(▽α)=∂xj∂(∂xi∂α)gj⊗gi=∂xi∂(∂xj∂α)gi⊗gj(▽α)▽=▽(▽α)
则,加速度梯度的反对称部分为
J
=
(
▽
α
)
▽
−
▽
(
▽
α
)
2
=
0
\bold J =\dfrac{(\triangledown\alpha)\triangledown-\triangledown(\triangledown\alpha)}{2} =0
J=2(▽α)▽−▽(▽α)=0
那么
D
D
t
(
F
T
⋅
W
⋅
F
)
=
F
T
⋅
(
D
⋅
W
+
W
∙
+
W
⋅
D
)
⋅
F
=
F
T
⋅
J
⋅
F
=
0
\dfrac{D}{Dt}(\bold F^T\cdot\bold W\cdot\bold F) ={\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F ={\bold F}^T\cdot\bold J\cdot\bold F=0
DtD(FT⋅W⋅F)=FT⋅(D⋅W+W∙+W⋅D)⋅F=FT⋅J⋅F=0
若运动某一时刻无旋,即某一时刻
W
=
0
\bold W=0
W=0,则运动过程中始终有:
F
T
⋅
W
⋅
F
=
0
\bold F^T\cdot\bold W\cdot\bold F=0
FT⋅W⋅F=0
由于
F
\bold F
F 正则,故在运动过程中始终有:
W
=
0
\bold W=0
W=0
即,运动始终无旋。
命题 \quad 若速度场为势的梯度,则加速度场也为势的梯度。
证明:由于速度有势,则
v
⃗
=
▽
φ
(
x
⃗
,
t
)
\vec{v}=\triangledown\varphi(\vec{x},t)
v=▽φ(x,t)
那么
a
⃗
=
v
⃗
∙
=
▽
φ
∙
=
(
▽
φ
)
′
+
(
v
⃗
▽
)
⋅
v
⃗
\vec{a} =\overset{\bullet}{\vec{v}} =\overset{\bullet}{\triangledown\varphi} =(\triangledown\varphi)'+(\vec{v}\triangledown)\cdot\vec{v}
a=v∙=▽φ∙=(▽φ)′+(v▽)⋅v
由于
(
▽
×
v
⃗
)
×
v
⃗
=
(
v
⃗
▽
−
▽
v
⃗
)
⋅
v
⃗
=
v
⃗
▽
⋅
v
⃗
−
▽
v
⃗
⋅
v
⃗
▽
v
⃗
⋅
v
⃗
=
▽
(
v
⃗
⋅
v
⃗
2
)
▽
×
v
⃗
=
▽
×
(
▽
φ
)
=
∂
2
φ
∂
x
i
∂
x
j
ϵ
i
j
k
g
⃗
k
=
0
(\triangledown\times\vec{v})\times\vec{v} =(\vec{v}\triangledown-\triangledown\vec{v})\cdot\vec{v} =\vec{v}\triangledown\cdot\vec{v}-\triangledown\vec{v}\cdot\vec{v}\\\ \\ \triangledown\vec{v}\cdot\vec{v} =\triangledown\left(\dfrac{\vec{v}\cdot\vec{v}}{2}\right) \\\ \\ \triangledown\times\vec{v} =\triangledown\times(\triangledown\varphi) =\dfrac{\partial^2\varphi}{\partial x^i\partial x^j}\epsilon^{ijk}\vec{g}_k=0
(▽×v)×v=(v▽−▽v)⋅v=v▽⋅v−▽v⋅v ▽v⋅v=▽(2v⋅v) ▽×v=▽×(▽φ)=∂xi∂xj∂2φϵijkgk=0
故
a
⃗
=
▽
(
φ
′
+
v
⃗
⋅
v
⃗
2
)
\vec{a}=\triangledown\left(\varphi'+\dfrac{\vec{v}\cdot\vec{v}}{2}\right)
a=▽(φ′+2v⋅v)
证毕。
4. 涡旋传输定理
5. 变形率 D \bold D D 与物质旋率 W \bold W W 的几何意义
5.1. 线元的物质导数与相关的相对变化率
由于任意线元
d
x
⃗
d\vec{x}
dx 的物质导数为:
D
D
t
(
d
x
⃗
)
=
D
D
t
(
F
⋅
d
X
⃗
)
=
F
∙
⋅
X
⃗
=
(
F
∙
⋅
F
−
1
)
⋅
(
F
⋅
d
X
⃗
)
=
L
⋅
d
x
⃗
\dfrac{D}{Dt}(d\vec{x}) =\dfrac{D}{Dt}(\bold F\cdot d\vec{X}) =\overset{\bullet}{\bold F}\cdot\vec{X} =(\overset{\bullet}{\bold F}\cdot\bold F^{-1})\cdot(\bold F\cdot d\vec{X}) =\bold L\cdot d\vec{x}
DtD(dx)=DtD(F⋅dX)=F∙⋅X=(F∙⋅F−1)⋅(F⋅dX)=L⋅dx
5.1.1. 线元长度的相对变化率
任意线元
d
x
⃗
d\vec{x}
dx 长度
∣
d
x
⃗
∣
|d\vec{x}|
∣dx∣ 的物质导数为:
D
D
t
(
∣
d
x
⃗
∣
)
=
D
D
t
d
x
⃗
⋅
d
x
⃗
=
1
2
∣
d
x
⃗
∣
[
D
D
t
(
d
x
⃗
)
⋅
d
x
⃗
+
d
x
⃗
⋅
D
D
t
(
d
x
⃗
)
]
=
1
∣
d
x
⃗
∣
(
d
x
⃗
⋅
L
T
+
L
2
⋅
d
x
⃗
)
=
1
∣
d
x
⃗
∣
(
d
x
⃗
⋅
D
⋅
d
x
⃗
)
=
l
⃗
⋅
(
D
⋅
d
x
⃗
)
\begin{aligned} &\dfrac{D}{Dt}(|d\vec{x}|) =\dfrac{D}{Dt}\sqrt{d\vec{x}\cdot d\vec{x}} =\dfrac{1}{2|d\vec{x}|}\left[\dfrac{D}{Dt}(d\vec{x})\cdot d\vec{x}+d\vec{x}\cdot\dfrac{D}{Dt}(d\vec{x})\right]\\\\ &\qquad\qquad=\dfrac{1}{|d\vec{x}|}\left(d\vec{x}\cdot\dfrac{\bold L^T+\bold L}{2}\cdot d\vec{x}\right) =\dfrac{1}{|d\vec{x}|}\left(d\vec{x}\cdot\bold D\cdot d\vec{x}\right) =\vec{l}\cdot(\bold D\cdot d\vec{x}) \end{aligned}
DtD(∣dx∣)=DtDdx⋅dx=2∣dx∣1[DtD(dx)⋅dx+dx⋅DtD(dx)]=∣dx∣1(dx⋅2LT+L⋅dx)=∣dx∣1(dx⋅D⋅dx)=l⋅(D⋅dx)
可理解为
D
⋅
d
x
⃗
\bold D\cdot d\vec{x}
D⋅dx 在
l
⃗
\vec{l}
l 上的投影。故沿单位切向量
l
⃗
\vec{l}
l 的线元
d
x
⃗
d\vec{x}
dx 的长度的相对变化率
d
l
d_l
dl 为:
d
l
⃗
≜
∣
d
x
⃗
∣
∙
∣
d
x
⃗
∣
=
d
x
⃗
∣
d
x
⃗
∣
⋅
D
⋅
d
x
⃗
∣
d
x
⃗
∣
=
l
⃗
⋅
D
⋅
l
⃗
d_{\vec{l}} \triangleq\dfrac{\overset{\bullet}{|d\vec{x}|}}{|d\vec{x}|} =\dfrac{d\vec{x}}{|d\vec{x}|}\cdot\bold D\cdot \dfrac{d\vec{x}}{|d\vec{x}|} =\vec{l}\cdot\bold D\cdot\vec{l}
dl≜∣dx∣∣dx∣∙=∣dx∣dx⋅D⋅∣dx∣dx=l⋅D⋅l
进一步讨论,在当前时刻什么方向上使得线元的长度相对变化率最大?即求解
{
max
l
⃗
(
l
⃗
⋅
D
⋅
l
⃗
)
∣
l
⃗
∣
=
1
\begin{cases} \max\limits_{\vec l}\ (\vec{l}\cdot\bold D\cdot\vec{l})\\\\ |\vec{l}|=1 \end{cases}
⎩
⎨
⎧lmax (l⋅D⋅l)∣l∣=1
采用 Lagrange 乘子法进行求解,使得问题化为如下无约束极值问题的必要条件:
{
∂
∂
l
k
[
l
i
l
j
D
i
j
−
η
(
l
i
l
j
g
i
j
−
1
)
]
=
0
l
i
l
i
−
1
=
0
\begin{cases} \dfrac{\partial}{\partial l^k}[l^il^jD_{ij}-\eta(l^il^jg_{ij}-1)]=0\\\\ l^il_i-1=0 \end{cases}
⎩
⎨
⎧∂lk∂[liljDij−η(liljgij−1)]=0lili−1=0
即
{
(
D
i
k
−
η
g
i
k
)
l
i
=
0
l
i
l
j
g
i
j
−
1
=
0
⟹
{
(
D
∙
k
i
−
η
δ
∙
k
i
)
l
i
=
0
l
i
l
j
g
i
j
−
1
=
0
\begin{cases} (D_{ik}-\eta g_{ik})l^i=0\\\\ l^il^jg_{ij}-1=0 \end{cases} \Longrightarrow \begin{cases} (D^i_{\bullet k}-\eta \delta^i_{\bullet k})l_i=0\\\\ l^il^jg_{ij}-1=0 \end{cases}
⎩
⎨
⎧(Dik−ηgik)li=0liljgij−1=0⟹⎩
⎨
⎧(D∙ki−ηδ∙ki)li=0liljgij−1=0
其求解等价于求解
D
\bold D
D 的特征值与单位特征向量问题:
(
D
−
η
I
)
l
⃗
=
0
(\bold D-\eta\bold I)\vec{l}=0
(D−ηI)l=0
由于
D
\bold D
D 是对称张量,故存在三个实特征值
d
α
(
α
=
1
,
2
,
3
)
d_{\alpha}(\alpha=1,2,3)
dα(α=1,2,3) 并总可以找到两两垂直的单位特征方向
v
⃗
α
(
α
=
1
,
2
,
3
)
\vec{v}_\alpha(\alpha=1,2,3)
vα(α=1,2,3)。且
d
v
⃗
α
=
v
⃗
α
⋅
(
D
⋅
v
⃗
α
)
=
v
⃗
α
⋅
(
d
α
v
⃗
α
)
=
d
α
(
α
=
1
,
2
,
3
)
d_{\vec{v}_\alpha}=\vec{v}_\alpha\cdot(\bold D\cdot\vec{v}_\alpha)=\vec{v}_\alpha\cdot(d_{\alpha}\vec{v}_\alpha)=d_\alpha\quad(\alpha=1,2,3)
dvα=vα⋅(D⋅vα)=vα⋅(dαvα)=dα(α=1,2,3)
上述讨论实际上说明:在各时刻,线元长度的相对变化率取极值(驻值)的方向为伸长率张量的主方向,长度相对变化率的大小为伸长率张量的对应的驻值。
5.1.2. 线元方向的变化率 (与 W 相关)
考虑线元
d
x
⃗
d\vec{x}
dx 单位切向量
l
⃗
\vec{l}
l 的物质导数:
D
l
⃗
D
t
=
D
D
t
(
d
x
⃗
∣
d
x
⃗
∣
)
=
1
∣
d
x
⃗
∣
D
D
t
(
d
x
⃗
)
−
d
x
⃗
∣
d
x
⃗
∣
2
D
D
t
(
∣
d
x
⃗
∣
)
=
L
⋅
d
x
⃗
∣
d
x
⃗
∣
−
d
x
⃗
∣
d
x
⃗
∣
(
l
⃗
⋅
D
⋅
l
⃗
)
=
(
L
−
d
l
⃗
I
)
⋅
l
⃗
\begin{aligned} &\dfrac{D\ \vec{l}}{Dt} =\dfrac{D}{Dt}\left(\dfrac{d\vec{x}}{|d\vec{x}|}\right) =\dfrac{1}{|d\vec{x}|}\dfrac{D}{Dt}(d\vec{x})-\dfrac{d\vec{x}}{|d\vec{x}|^2}\dfrac{D}{Dt}(|d\vec{x}|)\\\\ &\qquad\qquad\qquad\qquad=\bold L\cdot\dfrac{d\vec{x}}{|d\vec{x}|}-\dfrac{d\vec{x}}{|d\vec{x}|}(\vec{l}\cdot\bold D\cdot\vec{l})\\\\ &\qquad\qquad\qquad\qquad=(\bold L-d_{\vec{l}}\bold I)\cdot\vec{l} \end{aligned}
DtD l=DtD(∣dx∣dx)=∣dx∣1DtD(dx)−∣dx∣2dxDtD(∣dx∣)=L⋅∣dx∣dx−∣dx∣dx(l⋅D⋅l)=(L−dlI)⋅l
其中,
d
l
⃗
d_{\vec{l}}
dl 为
l
⃗
\vec{l}
l 方向线元长度的相对变化率。又
D
l
⃗
D
t
⋅
l
⃗
=
l
⃗
⋅
(
L
−
d
l
⃗
I
)
⋅
l
⃗
=
l
⃗
⋅
(
L
−
D
)
⋅
l
⃗
=
l
⃗
⋅
W
⋅
l
⃗
=
0
\dfrac{D\ \vec{l}}{Dt}\cdot\vec{l} =\vec{l}\cdot(\bold L-d_{\vec{l}}\bold I)\cdot\vec{l} =\vec{l}\cdot(\bold L-\bold D)\cdot\vec{l} =\vec{l}\cdot\bold W\cdot\vec{l}=0
DtD l⋅l=l⋅(L−dlI)⋅l=l⋅(L−D)⋅l=l⋅W⋅l=0
由于物质旋率张量是反对称张量。这也说明了单位切向量的物质导数与自身垂直的几何含义。
5.1.3. 线元夹角余弦的变化率
在当前时刻,存在两线元
d
x
⃗
(
1
)
d\vec{x}_{(1)}
dx(1) 与
d
x
⃗
(
2
)
d\vec{x}_{(2)}
dx(2),其单位切向量分别为:
l
⃗
(
1
)
、
l
⃗
(
2
)
\vec{l}_{(1)}、\vec{l}_{(2)}
l(1)、l(2),夹角为:
θ
\theta
θ。那么
D
D
t
(
c
o
s
θ
)
=
D
D
t
(
l
⃗
(
1
)
⋅
l
⃗
(
2
)
)
=
l
⃗
(
1
)
⋅
D
l
⃗
(
2
)
D
t
+
D
l
⃗
(
1
)
D
t
⋅
l
⃗
(
2
)
=
l
⃗
(
1
)
⋅
(
L
−
d
l
⃗
(
2
)
I
)
⋅
l
⃗
(
2
)
+
(
L
−
d
l
⃗
(
1
)
I
)
⋅
l
⃗
(
1
)
⋅
l
⃗
(
2
)
=
l
⃗
(
1
)
⋅
(
L
−
d
l
⃗
(
2
)
I
)
⋅
l
⃗
(
2
)
+
l
⃗
(
1
)
⋅
(
L
T
−
d
l
⃗
(
1
)
I
)
⋅
l
⃗
(
2
)
=
2
l
⃗
(
1
)
⋅
D
⋅
l
⃗
(
2
)
−
(
d
l
⃗
(
1
)
+
d
l
⃗
(
1
)
)
l
⃗
(
1
)
⋅
l
⃗
(
2
)
\begin{aligned} &\quad\dfrac{D}{Dt}(cos\theta) =\dfrac{D}{Dt}(\vec{l}_{(1)}\cdot\vec{l}_{(2)})\\\\ &=\vec{l}_{(1)}\cdot\dfrac{D\ \vec{l}_{(2)}}{Dt}+\dfrac{D\ \vec{l}_{(1)}}{Dt}\cdot\vec{l}_{(2)}\\\\ &=\vec{l}_{(1)}\cdot\left(\bold L-d_{\vec{l}_{(2)}}\bold I\right)\cdot\vec{l}_{(2)}+\left(\bold L-d_{\vec{l}_{(1)}}\bold I\right)\cdot\vec{l}_{(1)}\cdot\vec{l}_{(2)}\\\\ &=\vec{l}_{(1)}\cdot\left(\bold L-d_{\vec{l}_{(2)}}\bold I\right)\cdot\vec{l}_{(2)}+\vec{l}_{(1)}\cdot\left(\bold L^T-d_{\vec{l}_{(1)}}\bold I\right)\cdot\vec{l}_{(2)}\\\\ &=2\vec{l}_{(1)}\cdot\bold D\cdot\vec{l}_{(2)}-\left(d_{\vec{l}_{(1)}}+d_{\vec{l}_{(1)}}\right)\vec{l}_{(1)}\cdot\vec{l}_{(2)} \end{aligned}
DtD(cosθ)=DtD(l(1)⋅l(2))=l(1)⋅DtD l(2)+DtD l(1)⋅l(2)=l(1)⋅(L−dl(2)I)⋅l(2)+(L−dl(1)I)⋅l(1)⋅l(2)=l(1)⋅(L−dl(2)I)⋅l(2)+l(1)⋅(LT−dl(1)I)⋅l(2)=2l(1)⋅D⋅l(2)−(dl(1)+dl(1))l(1)⋅l(2)
特别地,若考虑
θ
=
90
°
\theta=90\degree
θ=90°,则
D
D
t
(
c
o
s
θ
)
∣
θ
=
90
°
=
−
D
θ
D
t
∣
θ
=
90
°
=
2
l
⃗
(
1
)
⋅
D
⋅
l
⃗
(
2
)
\left.\dfrac{D}{Dt}(cos\theta)\right|_{\theta=90\degree}=-\left.\dfrac{D\theta}{Dt}\right|_{\theta=90\degree}=2\vec{l}_{(1)}\cdot\bold D\cdot\vec{l}_{(2)}
DtD(cosθ)
θ=90°=−DtDθ
θ=90°=2l(1)⋅D⋅l(2)
5.2. 体元的物质导数与与其相对变化率
5.2.1. 体元的物质导数与与其相对变化率
由于
D
D
t
(
d
v
)
=
D
D
t
(
J
d
v
0
)
=
J
∙
d
v
0
=
▽
⋅
v
⃗
J
d
v
0
=
▽
⋅
v
⃗
d
v
\dfrac{D}{Dt}(dv) =\dfrac{D}{Dt}(\mathscr J dv_0) =\overset{\bullet}{\mathscr J}dv_0 =\triangledown\cdot\vec{v}{\mathscr J}dv_0 =\triangledown\cdot\vec{v}dv
DtD(dv)=DtD(Jdv0)=J∙dv0=▽⋅vJdv0=▽⋅vdv
又
▽
⋅
v
⃗
=
v
i
∣
i
=
t
r
(
v
⃗
⊗
▽
)
=
t
r
(
L
)
=
t
r
(
D
)
\triangledown\cdot\vec{v} =v^i|_i =tr(\vec{v}\otimes\triangledown) =tr(\bold L) =tr(\bold D)
▽⋅v=vi∣i=tr(v⊗▽)=tr(L)=tr(D)
故任意体元
d
v
dv
dv 的物质导数为:
D
D
t
(
d
v
)
=
t
r
(
D
)
d
v
\dfrac{D}{Dt}(dv)=tr(\bold D)dv
DtD(dv)=tr(D)dv
则体元的相对变化率为:
d
v
∙
d
v
=
t
r
(
D
)
\dfrac{\overset{\bullet}{dv}}{dv}=tr(\bold D)
dvdv∙=tr(D)
5.2.2 体元物质导数的另一种表达
对任意仿射量
F
、
B
\bold {F、B}
F、B 与 实数
δ
\delta
δ, 记
F
^
=
F
+
δ
B
\bold{\hat{F}}=\bold F +\delta\bold B
F^=F+δB
则
J
^
≜
d
e
t
(
F
^
)
=
d
e
t
(
F
+
δ
B
)
=
d
e
t
(
F
)
d
e
t
(
I
+
δ
B
F
−
1
)
\hat{\mathscr J}\triangleq det(\bold{\hat{F}}) =det(\bold F +\delta\bold B) =det(\bold F)det(\bold I+\delta\bold B\bold F^{-1})
J^≜det(F^)=det(F+δB)=det(F)det(I+δBF−1)
进一步有:
D
J
^
D
δ
∣
δ
=
0
=
d
e
t
(
F
)
t
r
(
B
F
−
1
)
\left.\dfrac{D\hat{\mathscr J}}{D\delta}\right|_{\delta=0} =det(\bold F)tr(\bold B\bold F^{-1})
DδDJ^
δ=0=det(F)tr(BF−1)
上式运用了特征多项式展开的相关性质。得到上述结论后,令上式中
F
\bold F
F 代表变形梯度,且
δ
=
t
,
B
=
F
∙
\delta= t,\bold B=\overset{\bullet}{\bold F}
δ=t,B=F∙
则有:
D
d
e
t
(
F
+
t
F
∙
)
D
t
∣
t
=
0
=
J
t
r
L
=
J
t
r
D
\left.\dfrac{D\ det(\bold F +t\overset{\bullet}{\bold F})}{Dt}\right|_{t=0}=\mathscr{J}tr{\bold L}=\mathscr{J}tr{\bold D}
DtD det(F+tF∙)
t=0=JtrL=JtrD
则
[
D
d
e
t
(
F
+
t
F
∙
)
D
t
∣
t
=
0
]
d
v
0
=
t
r
(
D
)
d
v
=
d
v
∙
\left[\left.\dfrac{D\ det(\bold F +t\overset{\bullet}{\bold F})}{Dt}\right|_{t=0}\right]dv_0 =tr(\bold D)dv =\overset{\bullet}{dv}
DtD det(F+tF∙)
t=0
dv0=tr(D)dv=dv∙
5.3. 有向面元的物质导数与其面积的相对变化率
由于
D
D
t
(
N
⃗
d
S
)
=
D
D
t
(
J
F
−
T
⋅
0
N
⃗
d
S
0
)
=
D
D
t
(
J
F
−
T
)
⋅
0
N
⃗
d
S
0
=
[
t
r
(
D
)
(
J
F
−
T
)
+
J
(
F
∙
−
1
)
T
)
]
⋅
0
N
⃗
d
S
0
\begin{aligned} &\dfrac{D}{Dt}(\vec{N}dS) =\dfrac{D}{Dt}(\mathscr J\bold F^{-T}\cdot{_0}\vec{N} dS_0) =\dfrac{D}{Dt}(\mathscr J\bold F^{-T})\cdot{_0}\vec{N} dS_0\\\\ &\qquad\qquad\ \ =[tr(\bold D)(\mathscr J\bold F^{-T})+\mathscr J(\overset{\bullet}{\bold F}\ ^{-1})^T)]\cdot{_0}\vec{N} dS_0 \end{aligned}
DtD(NdS)=DtD(JF−T⋅0NdS0)=DtD(JF−T)⋅0NdS0 =[tr(D)(JF−T)+J(F∙ −1)T)]⋅0NdS0
又
D
D
t
(
F
⋅
F
−
1
)
=
F
∙
⋅
F
−
1
+
F
⋅
F
∙
−
1
=
0
F
∙
−
1
=
−
F
−
1
⋅
F
∙
⋅
F
−
1
=
−
F
−
1
⋅
L
\dfrac{D}{Dt}(\bold F\cdot\bold F^{-1}) =\overset{\bullet}{\bold F}\cdot\bold F^{-1}+\bold F\cdot\overset{\bullet}{\bold F}\ ^{-1}=0\\\ \\ \overset{\bullet}{\bold F}\ ^{-1}=-{\bold F}^{-1}\cdot\overset{\bullet}{\bold F}\cdot{\bold F}^{-1}=-{\bold F}^{-1}\cdot\bold L
DtD(F⋅F−1)=F∙⋅F−1+F⋅F∙ −1=0 F∙ −1=−F−1⋅F∙⋅F−1=−F−1⋅L
则任意有向线元的物质导数为:
D
D
t
(
N
⃗
d
S
)
=
[
t
r
(
D
)
(
J
F
−
T
)
−
L
T
⋅
(
J
F
−
T
)
]
⋅
0
N
⃗
d
S
0
=
[
t
r
(
D
)
I
−
L
T
]
⋅
N
⃗
d
S
\dfrac{D}{Dt}(\vec{N}dS) =[tr(\bold D)(\mathscr J\bold F^{-T})-\bold L^T\cdot(\mathscr J\bold F^{-T})]\cdot{_0}\vec{N} dS_0 =[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS
DtD(NdS)=[tr(D)(JF−T)−LT⋅(JF−T)]⋅0NdS0=[tr(D)I−LT]⋅NdS
进一步,微元面积的物质导数为:
D
d
S
D
t
=
D
D
t
N
⃗
d
S
⋅
N
⃗
d
S
=
1
2
d
S
{
[
t
r
(
D
)
I
−
L
T
]
⋅
N
⃗
d
S
⋅
N
⃗
d
S
+
N
⃗
d
S
⋅
[
t
r
(
D
)
I
−
L
T
]
⋅
N
⃗
d
S
}
=
1
2
d
S
{
N
⃗
d
S
⋅
[
t
r
(
D
)
I
−
L
]
⋅
N
⃗
d
S
+
N
⃗
d
S
⋅
[
t
r
(
D
)
I
−
L
T
]
⋅
N
⃗
d
S
}
=
1
d
S
[
t
r
(
D
)
(
d
S
)
2
−
N
⃗
d
S
⋅
L
+
L
T
2
⋅
N
⃗
d
S
]
=
d
S
[
t
r
(
D
)
−
N
⃗
⋅
D
⋅
N
⃗
]
\begin{aligned} &\dfrac{D\ dS}{Dt} =\dfrac{D}{Dt}\sqrt{\vec{N}dS\cdot\vec{N}dS}\\\\ &\ \qquad\ =\dfrac{1}{2dS}\left\{[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\cdot\vec{N}dS+\vec{N} dS\cdot[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\right\}\\\\ &\ \qquad\ =\dfrac{1}{2dS}\left\{\vec{N}dS\cdot[tr(\bold D)\bold I-\bold L]\cdot\vec{N}dS+\vec{N} dS\cdot[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\right\}\\\\ &\ \qquad\ =\dfrac{1}{dS}\left[tr(\bold D)(dS)^2-\vec{N} dS\cdot\dfrac{\bold L+\bold L^T}{2}\cdot\vec{N} dS\right]\\\\ &\ \qquad\ =dS\left[tr(\bold D)-\vec{N}\cdot\bold D\cdot\vec{N}\right] \end{aligned}
DtD dS=DtDNdS⋅NdS =2dS1{[tr(D)I−LT]⋅NdS⋅NdS+NdS⋅[tr(D)I−LT]⋅NdS} =2dS1{NdS⋅[tr(D)I−L]⋅NdS+NdS⋅[tr(D)I−LT]⋅NdS} =dS1[tr(D)(dS)2−NdS⋅2L+LT⋅NdS] =dS[tr(D)−N⋅D⋅N]
那么,任意有向面元
N
⃗
d
S
\vec{N}dS
NdS 面积的相对变化率为:
d
S
∙
d
S
=
t
r
(
D
)
−
N
⃗
⋅
D
⋅
N
⃗
=
t
r
(
D
)
−
d
N
⃗
\dfrac{\overset{\bullet}{dS}}{dS} =tr(\bold D)-\vec{N}\cdot\bold D\cdot\vec{N} =tr(\bold D)-d_{\vec{N}}
dSdS∙=tr(D)−N⋅D⋅N=tr(D)−dN
5.4. 物质旋率张量 W 的几何意义
当前时刻,伸长率张量
D
\bold D
D 的单位特征向量为:
v
⃗
α
(
α
=
1
,
2
,
3
)
\vec{v}_\alpha(\alpha=1,2,3)
vα(α=1,2,3) ,对应的特征值分别为:
d
α
(
α
=
1
,
2
,
3
)
d_\alpha(\alpha=1,2,3)
dα(α=1,2,3),考虑沿当前
v
⃗
α
\vec{v}_\alpha
vα 方向的线元的方向变化率:
l
⃗
∙
(
v
⃗
α
)
=
l
⃗
∙
∣
l
⃗
=
v
⃗
α
\overset{\bullet}{\vec{l}}(\vec{v}_\alpha)=\overset{\bullet}{\vec{l}}|_{\vec{l}=\vec{v}_\alpha}
l∙(vα)=l∙∣l=vα
需要注意的是:
l
⃗
∙
(
v
⃗
α
)
≠
v
⃗
α
∙
\overset{\bullet}{\vec{l}}(\vec{v}_\alpha)\ne\overset{\bullet}{\vec{v}_\alpha}
l∙(vα)=vα∙
因为对线元的单位方向的物质导数表示研究的始终是同一线元,但前一时刻与下一时刻伸长率张量的特征向量可能与不同线元相重合。
l
⃗
∙
(
v
⃗
α
)
=
(
L
−
d
α
I
)
⋅
v
⃗
α
=
(
L
−
D
)
⋅
v
⃗
α
=
W
⋅
v
⃗
α
=
ω
⃗
×
v
⃗
α
\overset{\bullet}{\vec{l}}(\vec{v}_\alpha) =(\bold L-d_{\alpha}\bold I)\cdot\vec{v}_{\alpha} =(\bold L-\bold D)\cdot\vec{v}_{\alpha} =\bold W\cdot\vec{v}_{\alpha} =\vec{\omega}\times\vec{v}_{\alpha}
l∙(vα)=(L−dαI)⋅vα=(L−D)⋅vα=W⋅vα=ω×vα
这表明:物质旋率张量是当前时刻与伸长率张量特征方向相重合的物质线元的转动速率张量。另外
D
D
t
(
d
x
⃗
)
=
L
⋅
d
x
⃗
=
∂
v
⃗
∂
x
i
d
x
i
=
d
v
⃗
=
D
⋅
d
x
⃗
+
W
⋅
d
x
⃗
\dfrac{D}{Dt}(d\vec{x}) =\bold L\cdot d\vec{x}=\dfrac{\partial\vec{v}}{\partial x^i}dx^i=d\vec{v} =\bold{D}\cdot d\vec{x}+\bold{W}\cdot d\vec{x}
DtD(dx)=L⋅dx=∂xi∂vdxi=dv=D⋅dx+W⋅dx
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)