大模型深度解析:从入门到精通,一篇掌握所有要点
大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。大模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型采
大模型的定义
大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。
大模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。
大模型采用预训练+微调的训练模式,在大规模数据上进行训练后,能快速适应一系列下游任务的模型。
大模型和小模型的区别
大模型和小模型在应用方面最大的区别是大模型偏向于全能化、通用化,而小模型一般偏向于解决某一垂直领域中的某个具体问题。比如一个图像识别小模型专门训练用来识别车牌号,对车牌号可以有很好的识别精度。但是一个图像识别大模型不仅可以识别车牌号,还可以识别我们生活中碰到的大部分图片,而且站在我们人类的视角来看,他似乎对图片中的内容有自己的理解,看起来拥有更高的智能化水平。
另外相比小模型来说,大模型通常具有更多的参数,能够学习更复杂的特征和模式。同时大模型的训练数据集也会更大,架构更为复杂,训练起来也需要更高的计算资源。
大模型的分类
按照输入数据类型的不同,大模型主要可以分为以下三大类:
语言大模型
是指在自然语言处理(NLP)领域中的一类大模型,通常用于处理文本数据和理解自然语言。
视觉大模型
是指在计算机视觉(CV)领域中使用的大模型,通常用于图像处理和分析。
多模态大模型
是指能够处理多种不同类型数据的大模型,例如文本、图像、音频等多模态数据。
按照应用领域的不同,大模型主要可以分为 L0、L1、L2 三个层级:
L0 通用大模型
是指可以在多个领域和任务上通用的大模型。通用大模型就像完成了大学前素质教育阶段的学生,有基础的认知能力,数学、英语、化学、物理等各学科也都懂一点。
L1 行业大模型
是指那些针对特定行业或领域的大模型。它们通常使用行业相关的数据进行预训练或微调,以提高在该领域的性能和准确度。行业大模型就像选择了某一个专业的大学生,对自己专业下的相关知识有了更深入的了解。
L2 垂直大模型
是指那些针对特定任务或场景的大模型。它们通常使用任务相关的数据进行预训练或微调,以提高在该任务上的性能和效果。垂直大模型就像研究生,对特定行业下的某个具体领域有比较深入的研究。
大语言模型LLM
大语言模型(Large Language Model,LLM)是大模型的子分类,是专门通过处理大量文本数据来理解和生成人类语言的AI系统,从而执行各种自然语言处理任务,如文本分类、问答、对话、内容总结等。我们最为常见的ChatGPT、百度文心一言、讯飞星火等都属于大语言模型。
大语言模型LLM的基础架构
目前流行的大语言模型的架构基本都沿用了当前NLP领域最热门最有效的架构—Transformer架构。Transformer架构来源于谷歌在2017年发表的论文《Attention Is All You Need》,翻译过来就是注意力就是你需要的一切。
注意力机制是大语言模型的核心机制,它让模型在处理文本时,能够同时关注输入中的所有词汇,无论句子长短,都能精准捕捉到远距离的语义关联。例如,在解析“华为公司发布了新款手机”这句话时,模型能够迅速聚焦“华为”与“手机”之间的关系,忽略“公司”或“发布”等词的干扰,这种能力使得大语言模型在处理大段文本、复杂语境时能够真正理解其表达的核心含义。
此外,大语言模型通过位置编码(Positional Encoding)的巧妙设计,模型得以理解文本中的词语位置和顺序,准确把握语言的时序特性,同时保留了高效的并行计算能力。
大语言模型LLM的应用场景
在企业数字化领域中,大语言模型常见的应用场景如下:
01 知识库问答系统:
通过提问的方式,快速查找企业知识库中的内容,并通过大模型对内容进行总结提炼并给出解决方案;如设备故障查询、设备运检查询、员工智能助手等。
02 问答式BI系统:
通过问答的方式让大模型进行数据库查询,并返回数据结果、可视化图形等内容,供用户进行便捷的数据分析。
03 智能体系统:
将大模型的自然语言能力和小模型的垂直领域能力进行整合,形成企业智能体系统,满足设备故障预测、电力负荷预测、供应商评估分析等智能化应用和预测场景。
END
大模型的发展是当前人工智能时代科技进步的必然趋势,甚至可以媲美工业革命般的历史意义。大模型这种新技术也帮我们带来了更多生活、工作的有利工具,同时为企业带来了从数字化迈向智能化的可能。因此,在这个数字化发展日新月异的时代,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。
随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。
那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
以上的AI大模型学习资料,都已上传至CSDN,需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)