(八)二阶张量与矩阵(一)
本文主要内容如下:1. 二阶张量的矩阵表示2. 二阶张量转置与矩阵转置3. 二阶张量的行列式与矩阵的行列式
1. 二阶张量的矩阵表示
任意二阶张量含有九个分量,正好可以通过三阶方阵进行表示,但二阶张量具有四种不同的分量形式,不同的分量对应于不同的方阵:
τ 1 = [ T i j ] = [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] τ 2 = [ T i ∙ j ] = [ T 1 ∙ 1 T 2 ∙ 1 T 3 ∙ 1 T 1 ∙ 2 T 2 ∙ 2 T 3 ∙ 2 T 1 ∙ 3 T 2 ∙ 3 T 3 ∙ 3 ] τ 3 = [ T ∙ j i ] = [ T ∙ 1 1 T ∙ 2 1 T ∙ 3 1 T ∙ 1 2 T ∙ 2 2 T ∙ 3 2 T ∙ 1 3 T ∙ 2 3 T ∙ 3 3 ] τ 4 = [ T i j ] = [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] %%%%%%%%%%% \tau_1=[T_{ij}]= \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ \\ T_{21} & T_{22} & T_{23} \\ \\ T_{31} & T_{32} & T_{33} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_2=[T_{i}^{\bullet j}]= \begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_3=[T^{i}_{\bullet j}]= \begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_4=[T^{ij}]= \begin{bmatrix} T^{11} & T^{12} & T^{13} \\ \\ T^{21} & T^{22} & T^{23} \\ \\ T^{31} & T^{32} & T^{33} \end{bmatrix} τ1=[Tij]=⎣ ⎡T11T21T31T12T22T32T13T23T33⎦ ⎤ τ2=[Ti∙j]=⎣ ⎡T1∙1T1∙2T1∙3T2∙1T2∙2T2∙3T3∙1T3∙2T3∙3⎦ ⎤ τ3=[T∙ji]=⎣ ⎡T∙11T∙12T∙13T∙21T∙22T∙23T∙31T∙32T∙33⎦ ⎤ τ4=[Tij]=⎣ ⎡T11T21T31T12T22T32T13T23T33⎦ ⎤
注:本文采用前(上)指标为行编号,后(下)指标为列编号的对应规则,而在《张量分析》-黄克智中采用前指标为行编号的对应规则,两种规则的区别仅在于 τ 2 \tau_{2} τ2的不同,两种规则得到的 τ 2 \tau_{2} τ2互为矩阵转置的关系。
特别地,度量张量也是二阶张量,其矩阵形式为:
G
1
=
[
g
i
j
]
=
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
G
2
=
G
3
=
[
δ
j
i
]
=
[
1
0
0
0
1
0
0
0
1
]
=
E
G
4
=
[
g
i
j
]
=
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
=
G
1
−
1
\mathscr{G}_{1}= [g_{ij}]= \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix}\\\ \\ %%%%%%%%%%%% \mathscr{G}_{2}= \mathscr{G}_{3}= [\delta^i_j]= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} =E\\\ \\ %%%%%%%%%%%% \mathscr{G}_{4}= [g^{ij}]= \begin{bmatrix} g^{11} & g^{12} & g^{13} \\\ \\ g^{21} & g^{22} & g^{23} \\\ \\ g^{31} & g^{32} & g^{33} \end{bmatrix} =\mathscr{G}_{1}^{-1}
G1=[gij]=⎣
⎡g11 g21 g31g12g22g32g13g23g33⎦
⎤ G2=G3=[δji]=⎣
⎡100010001⎦
⎤=E G4=[gij]=⎣
⎡g11 g21 g31g12g22g32g13g23g33⎦
⎤=G1−1注意到,在一般坐标系下,二阶张量对应的四个矩阵是不相等的,它们之间的转换通过指标升降关系的矩阵形式来实现:
[
T
11
T
12
T
13
T
21
T
22
T
23
T
31
T
32
T
33
]
=
[
T
1
∙
1
T
2
∙
1
T
3
∙
1
T
1
∙
2
T
2
∙
2
T
3
∙
2
T
1
∙
3
T
2
∙
3
T
3
∙
3
]
T
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
=
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
[
T
∙
1
1
T
∙
2
1
T
∙
3
1
T
∙
1
2
T
∙
2
2
T
∙
3
2
T
∙
1
3
T
∙
2
3
T
∙
3
3
]
=
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
[
T
11
T
12
T
13
T
21
T
22
T
23
T
31
T
32
T
33
]
[
g
11
g
12
g
13
g
21
g
22
g
23
g
31
g
32
g
33
]
\begin{bmatrix} T_{11} & T_{12} & T_{13} \\ \\ T_{21} & T_{22} & T_{23} \\ \\ T_{31} & T_{32} & T_{33} \end{bmatrix} =\ \begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix}^T \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} =\ \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} =\ \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} T^{11} & T^{12} & T^{13} \\ \\ T^{21} & T^{22} & T^{23} \\ \\ T^{31} & T^{32} & T^{33} \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix}
⎣
⎡T11T21T31T12T22T32T13T23T33⎦
⎤= ⎣
⎡T1∙1T1∙2T1∙3T2∙1T2∙2T2∙3T3∙1T3∙2T3∙3⎦
⎤T⎣
⎡g11 g21 g31g12g22g32g13g23g33⎦
⎤= ⎣
⎡g11 g21 g31g12g22g32g13g23g33⎦
⎤⎣
⎡T∙11T∙12T∙13T∙21T∙22T∙23T∙31T∙32T∙33⎦
⎤= ⎣
⎡g11 g21 g31g12g22g32g13g23g33⎦
⎤⎣
⎡T11T21T31T12T22T32T13T23T33⎦
⎤⎣
⎡g11 g21 g31g12g22g32g13g23g33⎦
⎤即:
τ
1
=
τ
2
T
G
1
=
G
1
τ
3
=
G
1
τ
4
G
1
\tau_{1} =\tau_{2}^T\mathscr{G}_{1} =\mathscr{G}_{1}\tau_{3} =\mathscr{G}_{1}\tau_{4}\mathscr{G}_{1}
τ1=τ2TG1=G1τ3=G1τ4G1那么:
G
1
−
1
τ
2
T
G
1
=
τ
3
⟹
τ
2
T
∼
τ
3
\mathscr{G}_{1}^{-1}\tau_{2}^T\mathscr{G}_{1}=\tau_3\Longrightarrow \tau_{2}^T\sim\tau_{3}
G1−1τ2TG1=τ3⟹τ2T∼τ3在笛卡尔坐标系中,由于
G
1
=
E
\mathscr{G}_{1}=E
G1=E 故在笛卡尔坐标系中有:
τ
1
=
τ
2
T
=
τ
3
=
τ
4
\tau_{1}=\tau_{2}^T=\tau_{3}=\tau_{4}
τ1=τ2T=τ3=τ4通常如不加说明,定义
τ
3
\tau_{3}
τ3为张量的矩阵。
2. 二阶张量转置与矩阵转置
二阶转置张量的分量形式为:
(
T
T
)
i
j
=
T
j
i
⟹
(
τ
T
)
1
=
[
(
T
T
)
i
j
]
=
[
(
T
T
)
11
(
T
T
)
12
(
T
T
)
13
(
T
T
)
21
(
T
T
)
22
(
T
T
)
23
(
T
T
)
31
(
T
T
)
32
(
T
T
)
33
]
=
[
T
11
T
21
T
31
T
12
T
22
T
32
T
13
T
23
T
33
]
=
(
τ
1
)
T
(
T
T
)
i
∙
j
=
T
∙
i
j
⟹
(
τ
T
)
2
=
[
(
T
T
)
i
∙
j
]
=
[
(
T
T
)
1
∙
1
(
T
T
)
2
∙
1
(
T
T
)
3
∙
1
(
T
T
)
1
∙
2
(
T
T
)
2
∙
2
(
T
T
)
3
∙
2
(
T
T
)
1
∙
3
(
T
T
)
2
∙
3
(
T
T
)
3
∙
3
]
=
[
T
∙
1
1
T
∙
2
1
T
∙
3
1
T
∙
1
2
T
∙
2
2
T
∙
3
2
T
∙
1
3
T
∙
2
3
T
∙
3
3
]
=
τ
3
(
T
T
)
∙
j
i
=
T
j
∙
i
⟹
(
τ
T
)
3
=
[
(
T
T
)
∙
j
i
]
=
[
(
T
T
)
∙
1
1
(
T
T
)
∙
2
1
(
T
T
)
∙
3
1
(
T
T
)
∙
1
2
(
T
T
)
∙
2
2
(
T
T
)
∙
3
2
(
T
T
)
∙
2
3
(
T
T
)
∙
2
3
(
T
T
)
∙
3
3
]
=
[
T
1
∙
1
T
2
∙
1
T
3
∙
1
T
1
∙
2
T
2
∙
2
T
3
∙
2
T
1
∙
3
T
2
∙
3
T
3
∙
3
]
=
τ
2
(
T
T
)
i
j
=
T
j
i
⟹
(
τ
T
)
4
=
[
(
T
T
)
i
j
]
=
[
(
T
T
)
11
(
T
T
)
12
(
T
T
)
13
(
T
T
)
21
(
T
T
)
22
(
T
T
)
23
(
T
T
)
31
(
T
T
)
32
(
T
T
)
33
]
=
[
T
11
T
21
T
31
T
12
T
22
T
32
T
13
T
23
T
33
]
=
(
τ
4
)
T
(T^{T})_{ij}=T_{ji} \Longrightarrow (\tau^T)_{1}=[(T^{T})_{ij}] =\begin{bmatrix} (T^{T})_{11} & (T^{T})_{12} & (T^{T})_{13} \\ \\ (T^{T})_{21} & (T^{T})_{22} & (T^{T})_{23} \\ \\ (T^{T})_{31} & (T^{T})_{32} & (T^{T})_{33} \end{bmatrix} =\begin{bmatrix} T_{11} & T_{21} & T_{31} \\ \\ T_{12} & T_{22} & T_{32} \\ \\ T_{13} & T_{23} & T_{33} \end{bmatrix} =(\tau_{1})^T\\\ \\ %%%%%%%%%%%% (T^{T})_{i}^{\bullet j}=T^{j}_{\bullet i} \Longrightarrow (\tau^T)_{2}=[(T^{T})_{i}^{\bullet j}] =\begin{bmatrix} (T^{T})_{1}^{\bullet 1} & (T^{T})_{2}^{\bullet 1} & (T^{T})_{3}^{\bullet 1} \\ \\ (T^{T})_{1}^{\bullet 2} & (T^{T})_{2}^{\bullet 2} & (T^{T})_{3}^{\bullet 2} \\ \\ (T^{T})_{1}^{\bullet 3} & (T^{T})_{2}^{\bullet 3} & (T^{T})_{3}^{\bullet 3} \end{bmatrix} =\begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} =\tau_{3}\\\ \\ %%%%%%%%%%%% (T^{T})^{i}_{\bullet j}=T_{j}^{\bullet i} \Longrightarrow (\tau^T)_{3}=[(T^{T})^{i}_{\bullet j}] =\begin{bmatrix} (T^{T})^{1}_{\bullet 1} & (T^{T})^{1}_{\bullet 2} & (T^{T})^{1}_{\bullet 3} \\ \\ (T^{T})^{2}_{\bullet 1} & (T^{T})^{2}_{\bullet 2} & (T^{T})^{2}_{\bullet 3} \\ \\ (T^{T})^{3}_{\bullet 2} & (T^{T})^{3}_{\bullet 2} & (T^{T})^{3}_{\bullet 3} \end{bmatrix} =\begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} =\tau_{2} \\\ \\ %%%%%%%%%%%% (T^{T})^{ij}=T^{ji} \Longrightarrow (\tau^T)_{4}=[(T^{T})^{ij}] =\begin{bmatrix} (T^{T})^{11} & (T^{T})^{12} & (T^{T})^{13} \\ \\ (T^{T})^{21} & (T^{T})^{22} & (T^{T})^{23} \\ \\ (T^{T})^{31} & (T^{T})^{32} & (T^{T})^{33} \end{bmatrix} =\begin{bmatrix} T^{11} & T^{21} & T^{31} \\ \\ T^{12} & T^{22} & T^{32} \\ \\ T^{13} & T^{23} & T^{33} \end{bmatrix} =(\tau_{4})^T
(TT)ij=Tji⟹(τT)1=[(TT)ij]=⎣
⎡(TT)11(TT)21(TT)31(TT)12(TT)22(TT)32(TT)13(TT)23(TT)33⎦
⎤=⎣
⎡T11T12T13T21T22T23T31T32T33⎦
⎤=(τ1)T (TT)i∙j=T∙ij⟹(τT)2=[(TT)i∙j]=⎣
⎡(TT)1∙1(TT)1∙2(TT)1∙3(TT)2∙1(TT)2∙2(TT)2∙3(TT)3∙1(TT)3∙2(TT)3∙3⎦
⎤=⎣
⎡T∙11T∙12T∙13T∙21T∙22T∙23T∙31T∙32T∙33⎦
⎤=τ3 (TT)∙ji=Tj∙i⟹(τT)3=[(TT)∙ji]=⎣
⎡(TT)∙11(TT)∙12(TT)∙23(TT)∙21(TT)∙22(TT)∙23(TT)∙31(TT)∙32(TT)∙33⎦
⎤=⎣
⎡T1∙1T1∙2T1∙3T2∙1T2∙2T2∙3T3∙1T3∙2T3∙3⎦
⎤=τ2 (TT)ij=Tji⟹(τT)4=[(TT)ij]=⎣
⎡(TT)11(TT)21(TT)31(TT)12(TT)22(TT)32(TT)13(TT)23(TT)33⎦
⎤=⎣
⎡T11T12T13T21T22T23T31T32T33⎦
⎤=(τ4)T这说明若两个张量互为转置,则它们的
τ
1
、
τ
4
\tau_1、\tau_4
τ1、τ4 矩阵也互为转置,而转置张量的
τ
2
\tau_2
τ2 矩阵与原张量的
τ
3
\tau_3
τ3 矩阵相等,转置张量的
τ
3
\tau_3
τ3 矩阵与原张量的
τ
2
\tau_2
τ2 矩阵相等。
- 更特别地,对于对称张量
N
\bold{N}
N有:
( N T ) i j = N i j ⟹ ( N 1 ) T = ( N T ) 1 = [ ( N T ) i j ] = [ ( N T ) 11 ( N T ) 12 ( N T ) 13 ( N T ) 21 ( N T ) 22 ( N T ) 23 ( N T ) 31 ( N T ) 32 ( N T ) 33 ] = [ N 11 N 12 N 13 N 21 N 22 N 23 N 31 N 32 N 33 ] = N 1 ( N T ) i ∙ j = N i ∙ j ⟹ N 3 = ( N T ) 2 = [ ( N T ) i ∙ j ] = [ ( N T ) 1 ∙ 1 ( N T ) 2 ∙ 1 ( N T ) 3 ∙ 1 ( N T ) 1 ∙ 2 ( N T ) 2 ∙ 2 ( N T ) 3 ∙ 2 ( N T ) 1 ∙ 3 ( N T ) 2 ∙ 3 ( N T ) 3 ∙ 3 ] = [ N 1 ∙ 1 N 2 ∙ 1 N 3 ∙ 1 N 1 ∙ 2 N 2 ∙ 2 N 3 ∙ 2 N 1 ∙ 3 N 2 ∙ 3 N 3 ∙ 3 ] = N 2 ( N T ) ∙ j i = N ∙ j i ⟹ N 2 = ( N T ) 3 = [ ( N T ) ∙ j i ] = [ ( N T ) ∙ 1 1 ( N T ) ∙ 2 1 ( N T ) ∙ 3 1 ( N T ) ∙ 1 2 ( N T ) ∙ 2 2 ( N T ) ∙ 3 2 ( N T ) ∙ 2 3 ( N T ) ∙ 2 3 ( N T ) ∙ 3 3 ] = [ N ∙ 1 1 N ∙ 2 1 N ∙ 3 1 N ∙ 1 2 N ∙ 2 2 N ∙ 3 2 N ∙ 2 3 N ∙ 2 3 N ∙ 3 3 ] = N 3 ( N T ) i j = N i j ⟹ ( N 4 ) T = ( N T ) 4 = [ ( N T ) i j ] = [ ( N T ) 11 ( N T ) 12 ( N T ) 13 ( N T ) 21 ( N T ) 22 ( N T ) 23 ( N T ) 31 ( N T ) 32 ( N T ) 33 ] = [ N 11 N 12 N 13 N 21 N 22 N 23 N 31 N 32 N 33 ] = N 4 (N^T)_{ij}=N_{ij} \Longrightarrow (N_{1})^T=(N^T)_{1}=[(N^{T})_{ij}] =\begin{bmatrix} (N^{T})_{11} & (N^{T})_{12} & (N^{T})_{13} \\ \\ (N^{T})_{21} & (N^{T})_{22} & (N^{T})_{23} \\ \\ (N^{T})_{31} & (N^{T})_{32} & (N^{T})_{33} \end{bmatrix} =\begin{bmatrix} N_{11} & N_{12} & N_{13} \\ \\ N_{21} & N_{22} & N_{23} \\ \\ N_{31} & N_{32} & N_{33} \end{bmatrix} =N_1\\\ \\ %%%%%%%%%%%% (N^{T})_{i}^{\bullet j}=N_{i}^{\bullet j} \Longrightarrow N_{3}=(N^T)_{2}=[(N^{T})_{i}^{\bullet j}] =\begin{bmatrix} (N^{T})_{1}^{\bullet 1} & (N^{T})_{2}^{\bullet 1} & (N^{T})_{3}^{\bullet 1} \\ \\ (N^{T})_{1}^{\bullet 2} & (N^{T})_{2}^{\bullet 2} & (N^{T})_{3}^{\bullet 2} \\ \\ (N^{T})_{1}^{\bullet 3} & (N^{T})_{2}^{\bullet 3} & (N^{T})_{3}^{\bullet 3} \end{bmatrix} =\begin{bmatrix} N_{1}^{\bullet 1} & N_{2}^{\bullet 1} & N_{3}^{\bullet 1} \\ \\ N_{1}^{\bullet 2} & N_{2}^{\bullet 2} & N_{3}^{\bullet 2} \\ \\ N_{1}^{\bullet 3} & N_{2}^{\bullet 3} & N_{3}^{\bullet 3} \end{bmatrix} =N_2 \\\ \\ %%%%%%%%%%%% (N^{T})^{i}_{\bullet j}=N^{i}_{\bullet j} \Longrightarrow N_2=(N^T)_{3}=[(N^{T})^{i}_{\bullet j}] =\begin{bmatrix} (N^{T})^{1}_{\bullet 1} & (N^{T})^{1}_{\bullet 2} & (N^{T})^{1}_{\bullet 3} \\ \\ (N^{T})^{2}_{\bullet 1} & (N^{T})^{2}_{\bullet 2} & (N^{T})^{2}_{\bullet 3} \\ \\ (N^{T})^{3}_{\bullet 2} & (N^{T})^{3}_{\bullet 2} & (N^{T})^{3}_{\bullet 3} \end{bmatrix} =\begin{bmatrix} N^{1}_{\bullet 1} & N^{1}_{\bullet 2} & N^{1}_{\bullet 3} \\ \\ N^{2}_{\bullet 1} & N^{2}_{\bullet 2} & N^{2}_{\bullet 3} \\ \\ N^{3}_{\bullet 2} & N^{3}_{\bullet 2} & N^{3}_{\bullet 3} \end{bmatrix} =N_{3} \\\ \\ %%%%%%%%%%%% (N^{T})^{ij}=N^{ij} \Longrightarrow (N_4)^T=(N^T)_{4}=[(N^{T})^{ij}] =\begin{bmatrix} (N^{T})^{11} & (N^{T})^{12} & (N^{T})^{13} \\ \\ (N^{T})^{21} & (N^{T})^{22} & (N^{T})^{23} \\ \\ (N^{T})^{31} & (N^{T})^{32} & (N^{T})^{33} \end{bmatrix} =\begin{bmatrix} N^{11} & N^{12} & N^{13} \\ \\ N^{21} & N^{22} & N^{23} \\ \\ N^{31} & N^{32} & N^{33} \end{bmatrix} =N_{4} (NT)ij=Nij⟹(N1)T=(NT)1=[(NT)ij]=⎣ ⎡(NT)11(NT)21(NT)31(NT)12(NT)22(NT)32(NT)13(NT)23(NT)33⎦ ⎤=⎣ ⎡N11N21N31N12N22N32N13N23N33⎦ ⎤=N1 (NT)i∙j=Ni∙j⟹N3=(NT)2=[(NT)i∙j]=⎣ ⎡(NT)1∙1(NT)1∙2(NT)1∙3(NT)2∙1(NT)2∙2(NT)2∙3(NT)3∙1(NT)3∙2(NT)3∙3⎦ ⎤=⎣ ⎡N1∙1N1∙2N1∙3N2∙1N2∙2N2∙3N3∙1N3∙2N3∙3⎦ ⎤=N2 (NT)∙ji=N∙ji⟹N2=(NT)3=[(NT)∙ji]=⎣ ⎡(NT)∙11(NT)∙12(NT)∙23(NT)∙21(NT)∙22(NT)∙23(NT)∙31(NT)∙32(NT)∙33⎦ ⎤=⎣ ⎡N∙11N∙12N∙23N∙21N∙22N∙23N∙31N∙32N∙33⎦ ⎤=N3 (NT)ij=Nij⟹(N4)T=(NT)4=[(NT)ij]=⎣ ⎡(NT)11(NT)21(NT)31(NT)12(NT)22(NT)32(NT)13(NT)23(NT)33⎦ ⎤=⎣ ⎡N11N21N31N12N22N32N13N23N33⎦ ⎤=N4可见,对称二阶张量 N \bold{N} N的 N 1 、 N 4 N_1、N_4 N1、N4 矩阵为对称矩阵且 N 2 = N 3 N_2=N_3 N2=N3,但 N 2 、 N 3 N_2、N_3 N2、N3 一般并不是对称矩阵。 - 对于反对称张量
Ω
\bold{\Omega}
Ω有:
( Ω T ) i j = − Ω i j ⟹ ( Ω 1 ) T = ( Ω T ) 1 = [ ( Ω T ) i j ] = [ ( Ω T ) 11 ( Ω T ) 12 ( Ω T ) 13 ( Ω T ) 21 ( Ω T ) 22 ( Ω T ) 23 ( Ω T ) 31 ( Ω T ) 32 ( Ω T ) 33 ] = − [ Ω 11 Ω 12 Ω 13 Ω 21 Ω 22 Ω 23 Ω 31 Ω 32 Ω 33 ] = − Ω 1 ( Ω T ) i ∙ j = − Ω i ∙ j ⟹ Ω 3 = ( Ω T ) 2 = [ ( Ω T ) i ∙ j ] = [ ( Ω T ) 1 ∙ 1 ( Ω T ) 2 ∙ 1 ( Ω T ) 3 ∙ 1 ( Ω T ) 1 ∙ 2 ( Ω T ) 2 ∙ 2 ( Ω T ) 3 ∙ 2 ( Ω T ) 1 ∙ 3 ( Ω T ) 2 ∙ 3 ( Ω T ) 3 ∙ 3 ] = − [ Ω 1 ∙ 1 Ω 2 ∙ 1 Ω 3 ∙ 1 Ω 1 ∙ 2 Ω 2 ∙ 2 Ω 3 ∙ 2 Ω 1 ∙ 3 Ω 2 ∙ 3 Ω 3 ∙ 3 ] = − Ω 2 ( Ω T ) ∙ j i = − Ω ∙ j i ⟹ Ω 2 = ( Ω T ) 3 = [ ( Ω T ) ∙ j i ] = [ ( Ω T ) ∙ 1 1 ( Ω T ) ∙ 2 1 ( Ω T ) ∙ 3 1 ( Ω T ) ∙ 1 2 ( Ω T ) ∙ 2 2 ( Ω T ) ∙ 3 2 ( Ω T ) ∙ 2 3 ( Ω T ) ∙ 2 3 ( Ω T ) ∙ 3 3 ] = − [ Ω ∙ 1 1 Ω ∙ 2 1 Ω ∙ 3 1 Ω ∙ 1 2 Ω ∙ 2 2 Ω ∙ 3 2 Ω ∙ 2 3 Ω ∙ 2 3 Ω ∙ 3 3 ] = − Ω 3 ( Ω T ) i j = − Ω i j ⟹ ( Ω 4 ) T = ( Ω T ) 4 = [ ( Ω T ) i j ] = [ ( Ω T ) 11 ( Ω T ) 12 ( Ω T ) 13 ( Ω T ) 21 ( Ω T ) 22 ( Ω T ) 23 ( Ω T ) 31 ( Ω T ) 32 ( Ω T ) 33 ] = − [ Ω 11 Ω 12 Ω 13 Ω 21 Ω 22 Ω 23 Ω 31 Ω 32 Ω 33 ] = − Ω 4 ({\Omega}^T)_{ij}=-{\Omega}_{ij} \Longrightarrow ({\Omega}_{1})^T=({\Omega}^T)_{1}=[({\Omega}^{T})_{ij}] =\begin{bmatrix} ({\Omega}^{T})_{11} & ({\Omega}^{T})_{12} & ({\Omega}^{T})_{13} \\ \\ ({\Omega}^{T})_{21} & ({\Omega}^{T})_{22} & ({\Omega}^{T})_{23} \\ \\ ({\Omega}^{T})_{31} & ({\Omega}^{T})_{32} & ({\Omega}^{T})_{33} \end{bmatrix} =-\begin{bmatrix} {\Omega}_{11} & {\Omega}_{12} & {\Omega}_{13} \\ \\ {\Omega}_{21} & {\Omega}_{22} & {\Omega}_{23} \\ \\ {\Omega}_{31} & {\Omega}_{32} & {\Omega}_{33} \end{bmatrix} =-{\Omega}_1\\\ \\ %%%%%%%%%%%% ({\Omega}^{T})_{i}^{\bullet j}=-{\Omega}_{i}^{\bullet j} \Longrightarrow {\Omega}_{3}=({\Omega}^T)_{2}=[({\Omega}^{T})_{i}^{\bullet j}] =\begin{bmatrix} ({\Omega}^{T})_{1}^{\bullet 1} & ({\Omega}^{T})_{2}^{\bullet 1} & ({\Omega}^{T})_{3}^{\bullet 1} \\ \\ ({\Omega}^{T})_{1}^{\bullet 2} & ({\Omega}^{T})_{2}^{\bullet 2} & ({\Omega}^{T})_{3}^{\bullet 2} \\ \\ ({\Omega}^{T})_{1}^{\bullet 3} & ({\Omega}^{T})_{2}^{\bullet 3} & ({\Omega}^{T})_{3}^{\bullet 3} \end{bmatrix} =-\begin{bmatrix} {\Omega}_{1}^{\bullet 1} & {\Omega}_{2}^{\bullet 1} & {\Omega}_{3}^{\bullet 1} \\ \\ {\Omega}_{1}^{\bullet 2} & {\Omega}_{2}^{\bullet 2} & {\Omega}_{3}^{\bullet 2} \\ \\ {\Omega}_{1}^{\bullet 3} & {\Omega}_{2}^{\bullet 3} & {\Omega}_{3}^{\bullet 3} \end{bmatrix} =-{\Omega}_2 \\\ \\ %%%%%%%%%%%% ({\Omega}^{T})^{i}_{\bullet j}=-{\Omega}^{i}_{\bullet j} \Longrightarrow {\Omega}_2=({\Omega}^T)_{3}=[({\Omega}^{T})^{i}_{\bullet j}] =\begin{bmatrix} ({\Omega}^{T})^{1}_{\bullet 1} & ({\Omega}^{T})^{1}_{\bullet 2} & ({\Omega}^{T})^{1}_{\bullet 3} \\ \\ ({\Omega}^{T})^{2}_{\bullet 1} & ({\Omega}^{T})^{2}_{\bullet 2} & ({\Omega}^{T})^{2}_{\bullet 3} \\ \\ ({\Omega}^{T})^{3}_{\bullet 2} & ({\Omega}^{T})^{3}_{\bullet 2} & ({\Omega}^{T})^{3}_{\bullet 3} \end{bmatrix} =-\begin{bmatrix} {\Omega}^{1}_{\bullet 1} & {\Omega}^{1}_{\bullet 2} & {\Omega}^{1}_{\bullet 3} \\ \\ {\Omega}^{2}_{\bullet 1} & {\Omega}^{2}_{\bullet 2} & {\Omega}^{2}_{\bullet 3} \\ \\ {\Omega}^{3}_{\bullet 2} & {\Omega}^{3}_{\bullet 2} & {\Omega}^{3}_{\bullet 3} \end{bmatrix} =-{\Omega}_{3} \\\ \\ %%%%%%%%%%%% ({\Omega}^{T})^{ij}=-{\Omega}^{ij} \Longrightarrow ({\Omega}_4)^T=({\Omega}^T)_{4}=[({\Omega}^{T})^{ij}] =\begin{bmatrix} ({\Omega}^{T})^{11} & ({\Omega}^{T})^{12} & ({\Omega}^{T})^{13} \\ \\ ({\Omega}^{T})^{21} & ({\Omega}^{T})^{22} & ({\Omega}^{T})^{23} \\ \\ ({\Omega}^{T})^{31} & ({\Omega}^{T})^{32} & ({\Omega}^{T})^{33} \end{bmatrix} =-\begin{bmatrix} {\Omega}^{11} & {\Omega}^{12} & {\Omega}^{13} \\ \\ {\Omega}^{21} & {\Omega}^{22} & {\Omega}^{23} \\ \\ {\Omega}^{31} & {\Omega}^{32} & {\Omega}^{33} \end{bmatrix} =-{\Omega}_{4} (ΩT)ij=−Ωij⟹(Ω1)T=(ΩT)1=[(ΩT)ij]=⎣ ⎡(ΩT)11(ΩT)21(ΩT)31(ΩT)12(ΩT)22(ΩT)32(ΩT)13(ΩT)23(ΩT)33⎦ ⎤=−⎣ ⎡Ω11Ω21Ω31Ω12Ω22Ω32Ω13Ω23Ω33⎦ ⎤=−Ω1 (ΩT)i∙j=−Ωi∙j⟹Ω3=(ΩT)2=[(ΩT)i∙j]=⎣ ⎡(ΩT)1∙1(ΩT)1∙2(ΩT)1∙3(ΩT)2∙1(ΩT)2∙2(ΩT)2∙3(ΩT)3∙1(ΩT)3∙2(ΩT)3∙3⎦ ⎤=−⎣ ⎡Ω1∙1Ω1∙2Ω1∙3Ω2∙1Ω2∙2Ω2∙3Ω3∙1Ω3∙2Ω3∙3⎦ ⎤=−Ω2 (ΩT)∙ji=−Ω∙ji⟹Ω2=(ΩT)3=[(ΩT)∙ji]=⎣ ⎡(ΩT)∙11(ΩT)∙12(ΩT)∙23(ΩT)∙21(ΩT)∙22(ΩT)∙23(ΩT)∙31(ΩT)∙32(ΩT)∙33⎦ ⎤=−⎣ ⎡Ω∙11Ω∙12Ω∙23Ω∙21Ω∙22Ω∙23Ω∙31Ω∙32Ω∙33⎦ ⎤=−Ω3 (ΩT)ij=−Ωij⟹(Ω4)T=(ΩT)4=[(ΩT)ij]=⎣ ⎡(ΩT)11(ΩT)21(ΩT)31(ΩT)12(ΩT)22(ΩT)32(ΩT)13(ΩT)23(ΩT)33⎦ ⎤=−⎣ ⎡Ω11Ω21Ω31Ω12Ω22Ω32Ω13Ω23Ω33⎦ ⎤=−Ω4可见,反对称二阶张量 Ω \bold{{\Omega}} Ω的 Ω 1 、 Ω 4 {\Omega}_1、{\Omega}_4 Ω1、Ω4 矩阵为反对称矩阵且 Ω 2 = − Ω 3 {\Omega}_2=-{\Omega}_3 Ω2=−Ω3,但 Ω 2 、 Ω 3 {\Omega}_2、{\Omega}_3 Ω2、Ω3 一般并不是反对称矩阵。
3. 二阶张量的行列式与矩阵的行列式
二阶张量对应的四种矩阵具有不同的行列式值,根据四种矩阵间的转换关系,有:
d
e
t
(
τ
1
)
=
g
d
e
t
(
τ
2
)
=
g
d
e
t
(
τ
3
)
=
g
2
d
e
t
(
τ
4
)
(
1
)
det(\tau_{1})=g\ det(\tau_{2})=g\ det(\tau_{3})=g^2\ det(\tau_{4})\qquad(1)
det(τ1)=g det(τ2)=g det(τ3)=g2 det(τ4)(1)通常,定义张量
T
\bold{T}
T的行列式为
d
e
t
(
T
)
=
d
e
t
(
τ
3
)
det(\bold{T})=det(\tau_3)
det(T)=det(τ3),根据行列式的定义及(1)式可知:互为转置的张量行列式相等,即
d
e
t
(
T
T
)
=
d
e
t
(
T
)
det(\bold{T^T})=det(\bold{T})
det(TT)=det(T)
二阶张量行列式的几何意义:通过 T 对矢量组进行映射,映射前后矢量组所构成的平行六面体的体积比为
d
e
t
(
T
)
det(\bold T)
det(T)。证明如下:
由行列式交换行/列与行列式的置换符号表述关系知:
T
∙
p
i
T
∙
q
j
T
∙
l
k
e
i
j
k
=
T
∙
1
i
T
∙
2
j
T
∙
3
k
e
i
j
k
e
p
q
l
=
d
e
t
(
[
T
∙
j
i
]
)
e
p
q
l
T^{i}_{\bullet p}T^{j}_{\bullet q}T^{k}_{\bullet l}e_{ijk} =T^{i}_{\bullet 1}T^{j}_{\bullet 2}T^{k}_{\bullet 3}e_{ijk}e_{pql} =det([T^{i}_{\bullet j}])e_{pql}
T∙piT∙qjT∙lkeijk=T∙1iT∙2jT∙3keijkepql=det([T∙ji])epql那么,
[
T
∙
u
⃗
T
∙
v
⃗
T
∙
w
⃗
]
=
(
T
∙
p
i
u
p
)
(
T
∙
q
j
v
q
)
(
T
∙
l
k
w
l
)
ϵ
i
j
k
=
(
T
∙
p
i
T
∙
q
j
T
∙
l
k
e
i
j
k
)
(
u
p
v
q
w
l
)
g
=
d
e
t
(
[
T
∙
j
i
]
)
(
u
p
v
q
w
l
g
e
p
q
l
)
=
d
e
t
(
[
T
∙
j
i
]
)
(
u
p
v
q
w
l
ϵ
p
q
l
)
=
d
e
t
(
τ
3
)
[
u
⃗
v
⃗
w
⃗
]
\begin{aligned} &\quad\begin{bmatrix}T\bullet\vec{u} & T\bullet\vec{v} & T\bullet\vec{w}\end{bmatrix}\\\ \\ &=(T^{i}_{\bullet p}u^p)(T^{j}_{\bullet q}v^q)(T^{k}_{\bullet l}w^l)\epsilon_{ijk}\\\ \\ &=(T^{i}_{\bullet p}T^{j}_{\bullet q}T^{k}_{\bullet l}e_{ijk})(u^pv^qw^l)\sqrt{g}\\\ \\ &=det([T^{i}_{\bullet j}])(u^pv^qw^l\sqrt{g}e_{pql})\\\ \\ &=det([T^{i}_{\bullet j}])(u^pv^qw^l\epsilon_{pql})\\\ \\ &=det(\tau_3)\begin{bmatrix}\vec{u} & \vec{v} & \vec{w}\end{bmatrix} \end{aligned}
[T∙uT∙vT∙w]=(T∙piup)(T∙qjvq)(T∙lkwl)ϵijk=(T∙piT∙qjT∙lkeijk)(upvqwl)g=det([T∙ji])(upvqwlgepql)=det([T∙ji])(upvqwlϵpql)=det(τ3)[uvw]
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)