1. 二阶张量的矩阵表示

任意二阶张量含有九个分量,正好可以通过三阶方阵进行表示,但二阶张量具有四种不同的分量形式,不同的分量对应于不同的方阵:

τ 1 = [ T i j ] = [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ]   τ 2 = [ T i ∙ j ] = [ T 1 ∙ 1 T 2 ∙ 1 T 3 ∙ 1 T 1 ∙ 2 T 2 ∙ 2 T 3 ∙ 2 T 1 ∙ 3 T 2 ∙ 3 T 3 ∙ 3 ]   τ 3 = [ T ∙ j i ] = [ T ∙ 1 1 T ∙ 2 1 T ∙ 3 1 T ∙ 1 2 T ∙ 2 2 T ∙ 3 2 T ∙ 1 3 T ∙ 2 3 T ∙ 3 3 ]   τ 4 = [ T i j ] = [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] %%%%%%%%%%% \tau_1=[T_{ij}]= \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ \\ T_{21} & T_{22} & T_{23} \\ \\ T_{31} & T_{32} & T_{33} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_2=[T_{i}^{\bullet j}]= \begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_3=[T^{i}_{\bullet j}]= \begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} \\\ \\ %%%%%%%%%%%% \tau_4=[T^{ij}]= \begin{bmatrix} T^{11} & T^{12} & T^{13} \\ \\ T^{21} & T^{22} & T^{23} \\ \\ T^{31} & T^{32} & T^{33} \end{bmatrix} τ1=[Tij]= T11T21T31T12T22T32T13T23T33  τ2=[Tij]= T11T12T13T21T22T23T31T32T33  τ3=[Tji]= T11T12T13T21T22T23T31T32T33  τ4=[Tij]= T11T21T31T12T22T32T13T23T33

注:本文采用前(上)指标为行编号,后(下)指标为列编号的对应规则,而在《张量分析》-黄克智中采用前指标为行编号的对应规则,两种规则的区别仅在于 τ 2 \tau_{2} τ2的不同,两种规则得到的 τ 2 \tau_{2} τ2互为矩阵转置的关系。

特别地,度量张量也是二阶张量,其矩阵形式为:
G 1 = [ g i j ] = [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ]   G 2 = G 3 = [ δ j i ] = [ 1 0 0 0 1 0 0 0 1 ] = E   G 4 = [ g i j ] = [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] = G 1 − 1 \mathscr{G}_{1}= [g_{ij}]= \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix}\\\ \\ %%%%%%%%%%%% \mathscr{G}_{2}= \mathscr{G}_{3}= [\delta^i_j]= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} =E\\\ \\ %%%%%%%%%%%% \mathscr{G}_{4}= [g^{ij}]= \begin{bmatrix} g^{11} & g^{12} & g^{13} \\\ \\ g^{21} & g^{22} & g^{23} \\\ \\ g^{31} & g^{32} & g^{33} \end{bmatrix} =\mathscr{G}_{1}^{-1} G1=[gij]= g11 g21 g31g12g22g32g13g23g33  G2=G3=[δji]= 100010001 =E G4=[gij]= g11 g21 g31g12g22g32g13g23g33 =G11注意到,在一般坐标系下,二阶张量对应的四个矩阵是不相等的,它们之间的转换通过指标升降关系的矩阵形式来实现:
[ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] =   [ T 1 ∙ 1 T 2 ∙ 1 T 3 ∙ 1 T 1 ∙ 2 T 2 ∙ 2 T 3 ∙ 2 T 1 ∙ 3 T 2 ∙ 3 T 3 ∙ 3 ] T [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] =   [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] [ T ∙ 1 1 T ∙ 2 1 T ∙ 3 1 T ∙ 1 2 T ∙ 2 2 T ∙ 3 2 T ∙ 1 3 T ∙ 2 3 T ∙ 3 3 ] =   [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] [ g 11 g 12 g 13   g 21 g 22 g 23   g 31 g 32 g 33 ] \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ \\ T_{21} & T_{22} & T_{23} \\ \\ T_{31} & T_{32} & T_{33} \end{bmatrix} =\ \begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix}^T \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} =\ \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} =\ \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} T^{11} & T^{12} & T^{13} \\ \\ T^{21} & T^{22} & T^{23} \\ \\ T^{31} & T^{32} & T^{33} \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} & g_{13} \\\ \\ g_{21} & g_{22} & g_{23} \\\ \\ g_{31} & g_{32} & g_{33} \end{bmatrix} T11T21T31T12T22T32T13T23T33 =  T11T12T13T21T22T23T31T32T33 T g11 g21 g31g12g22g32g13g23g33 =  g11 g21 g31g12g22g32g13g23g33 T11T12T13T21T22T23T31T32T33 =  g11 g21 g31g12g22g32g13g23g33 T11T21T31T12T22T32T13T23T33 g11 g21 g31g12g22g32g13g23g33 即:
τ 1 = τ 2 T G 1 = G 1 τ 3 = G 1 τ 4 G 1 \tau_{1} =\tau_{2}^T\mathscr{G}_{1} =\mathscr{G}_{1}\tau_{3} =\mathscr{G}_{1}\tau_{4}\mathscr{G}_{1} τ1=τ2TG1=G1τ3=G1τ4G1那么:
G 1 − 1 τ 2 T G 1 = τ 3 ⟹ τ 2 T ∼ τ 3 \mathscr{G}_{1}^{-1}\tau_{2}^T\mathscr{G}_{1}=\tau_3\Longrightarrow \tau_{2}^T\sim\tau_{3} G11τ2TG1=τ3τ2Tτ3在笛卡尔坐标系中,由于 G 1 = E \mathscr{G}_{1}=E G1=E 故在笛卡尔坐标系中有: τ 1 = τ 2 T = τ 3 = τ 4 \tau_{1}=\tau_{2}^T=\tau_{3}=\tau_{4} τ1=τ2T=τ3=τ4通常如不加说明,定义 τ 3 \tau_{3} τ3为张量的矩阵。

2. 二阶张量转置与矩阵转置

二阶转置张量的分量形式为:
( T T ) i j = T j i ⟹ ( τ T ) 1 = [ ( T T ) i j ] = [ ( T T ) 11 ( T T ) 12 ( T T ) 13 ( T T ) 21 ( T T ) 22 ( T T ) 23 ( T T ) 31 ( T T ) 32 ( T T ) 33 ] = [ T 11 T 21 T 31 T 12 T 22 T 32 T 13 T 23 T 33 ] = ( τ 1 ) T   ( T T ) i ∙ j = T ∙ i j ⟹ ( τ T ) 2 = [ ( T T ) i ∙ j ] = [ ( T T ) 1 ∙ 1 ( T T ) 2 ∙ 1 ( T T ) 3 ∙ 1 ( T T ) 1 ∙ 2 ( T T ) 2 ∙ 2 ( T T ) 3 ∙ 2 ( T T ) 1 ∙ 3 ( T T ) 2 ∙ 3 ( T T ) 3 ∙ 3 ] = [ T ∙ 1 1 T ∙ 2 1 T ∙ 3 1 T ∙ 1 2 T ∙ 2 2 T ∙ 3 2 T ∙ 1 3 T ∙ 2 3 T ∙ 3 3 ] = τ 3   ( T T ) ∙ j i = T j ∙ i ⟹ ( τ T ) 3 = [ ( T T ) ∙ j i ] = [ ( T T ) ∙ 1 1 ( T T ) ∙ 2 1 ( T T ) ∙ 3 1 ( T T ) ∙ 1 2 ( T T ) ∙ 2 2 ( T T ) ∙ 3 2 ( T T ) ∙ 2 3 ( T T ) ∙ 2 3 ( T T ) ∙ 3 3 ] = [ T 1 ∙ 1 T 2 ∙ 1 T 3 ∙ 1 T 1 ∙ 2 T 2 ∙ 2 T 3 ∙ 2 T 1 ∙ 3 T 2 ∙ 3 T 3 ∙ 3 ] = τ 2   ( T T ) i j = T j i ⟹ ( τ T ) 4 = [ ( T T ) i j ] = [ ( T T ) 11 ( T T ) 12 ( T T ) 13 ( T T ) 21 ( T T ) 22 ( T T ) 23 ( T T ) 31 ( T T ) 32 ( T T ) 33 ] = [ T 11 T 21 T 31 T 12 T 22 T 32 T 13 T 23 T 33 ] = ( τ 4 ) T (T^{T})_{ij}=T_{ji} \Longrightarrow (\tau^T)_{1}=[(T^{T})_{ij}] =\begin{bmatrix} (T^{T})_{11} & (T^{T})_{12} & (T^{T})_{13} \\ \\ (T^{T})_{21} & (T^{T})_{22} & (T^{T})_{23} \\ \\ (T^{T})_{31} & (T^{T})_{32} & (T^{T})_{33} \end{bmatrix} =\begin{bmatrix} T_{11} & T_{21} & T_{31} \\ \\ T_{12} & T_{22} & T_{32} \\ \\ T_{13} & T_{23} & T_{33} \end{bmatrix} =(\tau_{1})^T\\\ \\ %%%%%%%%%%%% (T^{T})_{i}^{\bullet j}=T^{j}_{\bullet i} \Longrightarrow (\tau^T)_{2}=[(T^{T})_{i}^{\bullet j}] =\begin{bmatrix} (T^{T})_{1}^{\bullet 1} & (T^{T})_{2}^{\bullet 1} & (T^{T})_{3}^{\bullet 1} \\ \\ (T^{T})_{1}^{\bullet 2} & (T^{T})_{2}^{\bullet 2} & (T^{T})_{3}^{\bullet 2} \\ \\ (T^{T})_{1}^{\bullet 3} & (T^{T})_{2}^{\bullet 3} & (T^{T})_{3}^{\bullet 3} \end{bmatrix} =\begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} =\tau_{3}\\\ \\ %%%%%%%%%%%% (T^{T})^{i}_{\bullet j}=T_{j}^{\bullet i} \Longrightarrow (\tau^T)_{3}=[(T^{T})^{i}_{\bullet j}] =\begin{bmatrix} (T^{T})^{1}_{\bullet 1} & (T^{T})^{1}_{\bullet 2} & (T^{T})^{1}_{\bullet 3} \\ \\ (T^{T})^{2}_{\bullet 1} & (T^{T})^{2}_{\bullet 2} & (T^{T})^{2}_{\bullet 3} \\ \\ (T^{T})^{3}_{\bullet 2} & (T^{T})^{3}_{\bullet 2} & (T^{T})^{3}_{\bullet 3} \end{bmatrix} =\begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} =\tau_{2} \\\ \\ %%%%%%%%%%%% (T^{T})^{ij}=T^{ji} \Longrightarrow (\tau^T)_{4}=[(T^{T})^{ij}] =\begin{bmatrix} (T^{T})^{11} & (T^{T})^{12} & (T^{T})^{13} \\ \\ (T^{T})^{21} & (T^{T})^{22} & (T^{T})^{23} \\ \\ (T^{T})^{31} & (T^{T})^{32} & (T^{T})^{33} \end{bmatrix} =\begin{bmatrix} T^{11} & T^{21} & T^{31} \\ \\ T^{12} & T^{22} & T^{32} \\ \\ T^{13} & T^{23} & T^{33} \end{bmatrix} =(\tau_{4})^T (TT)ij=Tji(τT)1=[(TT)ij]= (TT)11(TT)21(TT)31(TT)12(TT)22(TT)32(TT)13(TT)23(TT)33 = T11T12T13T21T22T23T31T32T33 =(τ1)T (TT)ij=Tij(τT)2=[(TT)ij]= (TT)11(TT)12(TT)13(TT)21(TT)22(TT)23(TT)31(TT)32(TT)33 = T11T12T13T21T22T23T31T32T33 =τ3 (TT)ji=Tji(τT)3=[(TT)ji]= (TT)11(TT)12(TT)23(TT)21(TT)22(TT)23(TT)31(TT)32(TT)33 = T11T12T13T21T22T23T31T32T33 =τ2 (TT)ij=Tji(τT)4=[(TT)ij]= (TT)11(TT)21(TT)31(TT)12(TT)22(TT)32(TT)13(TT)23(TT)33 = T11T12T13T21T22T23T31T32T33 =(τ4)T这说明若两个张量互为转置,则它们的 τ 1 、 τ 4 \tau_1、\tau_4 τ1τ4 矩阵也互为转置,而转置张量的 τ 2 \tau_2 τ2 矩阵与原张量的 τ 3 \tau_3 τ3 矩阵相等,转置张量的 τ 3 \tau_3 τ3 矩阵与原张量的 τ 2 \tau_2 τ2 矩阵相等

  • 更特别地,对于对称张量 N \bold{N} N有:
    ( N T ) i j = N i j ⟹ ( N 1 ) T = ( N T ) 1 = [ ( N T ) i j ] = [ ( N T ) 11 ( N T ) 12 ( N T ) 13 ( N T ) 21 ( N T ) 22 ( N T ) 23 ( N T ) 31 ( N T ) 32 ( N T ) 33 ] = [ N 11 N 12 N 13 N 21 N 22 N 23 N 31 N 32 N 33 ] = N 1   ( N T ) i ∙ j = N i ∙ j ⟹ N 3 = ( N T ) 2 = [ ( N T ) i ∙ j ] = [ ( N T ) 1 ∙ 1 ( N T ) 2 ∙ 1 ( N T ) 3 ∙ 1 ( N T ) 1 ∙ 2 ( N T ) 2 ∙ 2 ( N T ) 3 ∙ 2 ( N T ) 1 ∙ 3 ( N T ) 2 ∙ 3 ( N T ) 3 ∙ 3 ] = [ N 1 ∙ 1 N 2 ∙ 1 N 3 ∙ 1 N 1 ∙ 2 N 2 ∙ 2 N 3 ∙ 2 N 1 ∙ 3 N 2 ∙ 3 N 3 ∙ 3 ] = N 2   ( N T ) ∙ j i = N ∙ j i ⟹ N 2 = ( N T ) 3 = [ ( N T ) ∙ j i ] = [ ( N T ) ∙ 1 1 ( N T ) ∙ 2 1 ( N T ) ∙ 3 1 ( N T ) ∙ 1 2 ( N T ) ∙ 2 2 ( N T ) ∙ 3 2 ( N T ) ∙ 2 3 ( N T ) ∙ 2 3 ( N T ) ∙ 3 3 ] = [ N ∙ 1 1 N ∙ 2 1 N ∙ 3 1 N ∙ 1 2 N ∙ 2 2 N ∙ 3 2 N ∙ 2 3 N ∙ 2 3 N ∙ 3 3 ] = N 3   ( N T ) i j = N i j ⟹ ( N 4 ) T = ( N T ) 4 = [ ( N T ) i j ] = [ ( N T ) 11 ( N T ) 12 ( N T ) 13 ( N T ) 21 ( N T ) 22 ( N T ) 23 ( N T ) 31 ( N T ) 32 ( N T ) 33 ] = [ N 11 N 12 N 13 N 21 N 22 N 23 N 31 N 32 N 33 ] = N 4 (N^T)_{ij}=N_{ij} \Longrightarrow (N_{1})^T=(N^T)_{1}=[(N^{T})_{ij}] =\begin{bmatrix} (N^{T})_{11} & (N^{T})_{12} & (N^{T})_{13} \\ \\ (N^{T})_{21} & (N^{T})_{22} & (N^{T})_{23} \\ \\ (N^{T})_{31} & (N^{T})_{32} & (N^{T})_{33} \end{bmatrix} =\begin{bmatrix} N_{11} & N_{12} & N_{13} \\ \\ N_{21} & N_{22} & N_{23} \\ \\ N_{31} & N_{32} & N_{33} \end{bmatrix} =N_1\\\ \\ %%%%%%%%%%%% (N^{T})_{i}^{\bullet j}=N_{i}^{\bullet j} \Longrightarrow N_{3}=(N^T)_{2}=[(N^{T})_{i}^{\bullet j}] =\begin{bmatrix} (N^{T})_{1}^{\bullet 1} & (N^{T})_{2}^{\bullet 1} & (N^{T})_{3}^{\bullet 1} \\ \\ (N^{T})_{1}^{\bullet 2} & (N^{T})_{2}^{\bullet 2} & (N^{T})_{3}^{\bullet 2} \\ \\ (N^{T})_{1}^{\bullet 3} & (N^{T})_{2}^{\bullet 3} & (N^{T})_{3}^{\bullet 3} \end{bmatrix} =\begin{bmatrix} N_{1}^{\bullet 1} & N_{2}^{\bullet 1} & N_{3}^{\bullet 1} \\ \\ N_{1}^{\bullet 2} & N_{2}^{\bullet 2} & N_{3}^{\bullet 2} \\ \\ N_{1}^{\bullet 3} & N_{2}^{\bullet 3} & N_{3}^{\bullet 3} \end{bmatrix} =N_2 \\\ \\ %%%%%%%%%%%% (N^{T})^{i}_{\bullet j}=N^{i}_{\bullet j} \Longrightarrow N_2=(N^T)_{3}=[(N^{T})^{i}_{\bullet j}] =\begin{bmatrix} (N^{T})^{1}_{\bullet 1} & (N^{T})^{1}_{\bullet 2} & (N^{T})^{1}_{\bullet 3} \\ \\ (N^{T})^{2}_{\bullet 1} & (N^{T})^{2}_{\bullet 2} & (N^{T})^{2}_{\bullet 3} \\ \\ (N^{T})^{3}_{\bullet 2} & (N^{T})^{3}_{\bullet 2} & (N^{T})^{3}_{\bullet 3} \end{bmatrix} =\begin{bmatrix} N^{1}_{\bullet 1} & N^{1}_{\bullet 2} & N^{1}_{\bullet 3} \\ \\ N^{2}_{\bullet 1} & N^{2}_{\bullet 2} & N^{2}_{\bullet 3} \\ \\ N^{3}_{\bullet 2} & N^{3}_{\bullet 2} & N^{3}_{\bullet 3} \end{bmatrix} =N_{3} \\\ \\ %%%%%%%%%%%% (N^{T})^{ij}=N^{ij} \Longrightarrow (N_4)^T=(N^T)_{4}=[(N^{T})^{ij}] =\begin{bmatrix} (N^{T})^{11} & (N^{T})^{12} & (N^{T})^{13} \\ \\ (N^{T})^{21} & (N^{T})^{22} & (N^{T})^{23} \\ \\ (N^{T})^{31} & (N^{T})^{32} & (N^{T})^{33} \end{bmatrix} =\begin{bmatrix} N^{11} & N^{12} & N^{13} \\ \\ N^{21} & N^{22} & N^{23} \\ \\ N^{31} & N^{32} & N^{33} \end{bmatrix} =N_{4} (NT)ij=Nij(N1)T=(NT)1=[(NT)ij]= (NT)11(NT)21(NT)31(NT)12(NT)22(NT)32(NT)13(NT)23(NT)33 = N11N21N31N12N22N32N13N23N33 =N1 (NT)ij=NijN3=(NT)2=[(NT)ij]= (NT)11(NT)12(NT)13(NT)21(NT)22(NT)23(NT)31(NT)32(NT)33 = N11N12N13N21N22N23N31N32N33 =N2 (NT)ji=NjiN2=(NT)3=[(NT)ji]= (NT)11(NT)12(NT)23(NT)21(NT)22(NT)23(NT)31(NT)32(NT)33 = N11N12N23N21N22N23N31N32N33 =N3 (NT)ij=Nij(N4)T=(NT)4=[(NT)ij]= (NT)11(NT)21(NT)31(NT)12(NT)22(NT)32(NT)13(NT)23(NT)33 = N11N21N31N12N22N32N13N23N33 =N4可见,对称二阶张量 N \bold{N} N N 1 、 N 4 N_1、N_4 N1N4 矩阵为对称矩阵且 N 2 = N 3 N_2=N_3 N2=N3,但 N 2 、 N 3 N_2、N_3 N2N3 一般并不是对称矩阵
  • 对于反对称张量 Ω \bold{\Omega} Ω有:
    ( Ω T ) i j = − Ω i j ⟹ ( Ω 1 ) T = ( Ω T ) 1 = [ ( Ω T ) i j ] = [ ( Ω T ) 11 ( Ω T ) 12 ( Ω T ) 13 ( Ω T ) 21 ( Ω T ) 22 ( Ω T ) 23 ( Ω T ) 31 ( Ω T ) 32 ( Ω T ) 33 ] = − [ Ω 11 Ω 12 Ω 13 Ω 21 Ω 22 Ω 23 Ω 31 Ω 32 Ω 33 ] = − Ω 1   ( Ω T ) i ∙ j = − Ω i ∙ j ⟹ Ω 3 = ( Ω T ) 2 = [ ( Ω T ) i ∙ j ] = [ ( Ω T ) 1 ∙ 1 ( Ω T ) 2 ∙ 1 ( Ω T ) 3 ∙ 1 ( Ω T ) 1 ∙ 2 ( Ω T ) 2 ∙ 2 ( Ω T ) 3 ∙ 2 ( Ω T ) 1 ∙ 3 ( Ω T ) 2 ∙ 3 ( Ω T ) 3 ∙ 3 ] = − [ Ω 1 ∙ 1 Ω 2 ∙ 1 Ω 3 ∙ 1 Ω 1 ∙ 2 Ω 2 ∙ 2 Ω 3 ∙ 2 Ω 1 ∙ 3 Ω 2 ∙ 3 Ω 3 ∙ 3 ] = − Ω 2   ( Ω T ) ∙ j i = − Ω ∙ j i ⟹ Ω 2 = ( Ω T ) 3 = [ ( Ω T ) ∙ j i ] = [ ( Ω T ) ∙ 1 1 ( Ω T ) ∙ 2 1 ( Ω T ) ∙ 3 1 ( Ω T ) ∙ 1 2 ( Ω T ) ∙ 2 2 ( Ω T ) ∙ 3 2 ( Ω T ) ∙ 2 3 ( Ω T ) ∙ 2 3 ( Ω T ) ∙ 3 3 ] = − [ Ω ∙ 1 1 Ω ∙ 2 1 Ω ∙ 3 1 Ω ∙ 1 2 Ω ∙ 2 2 Ω ∙ 3 2 Ω ∙ 2 3 Ω ∙ 2 3 Ω ∙ 3 3 ] = − Ω 3   ( Ω T ) i j = − Ω i j ⟹ ( Ω 4 ) T = ( Ω T ) 4 = [ ( Ω T ) i j ] = [ ( Ω T ) 11 ( Ω T ) 12 ( Ω T ) 13 ( Ω T ) 21 ( Ω T ) 22 ( Ω T ) 23 ( Ω T ) 31 ( Ω T ) 32 ( Ω T ) 33 ] = − [ Ω 11 Ω 12 Ω 13 Ω 21 Ω 22 Ω 23 Ω 31 Ω 32 Ω 33 ] = − Ω 4 ({\Omega}^T)_{ij}=-{\Omega}_{ij} \Longrightarrow ({\Omega}_{1})^T=({\Omega}^T)_{1}=[({\Omega}^{T})_{ij}] =\begin{bmatrix} ({\Omega}^{T})_{11} & ({\Omega}^{T})_{12} & ({\Omega}^{T})_{13} \\ \\ ({\Omega}^{T})_{21} & ({\Omega}^{T})_{22} & ({\Omega}^{T})_{23} \\ \\ ({\Omega}^{T})_{31} & ({\Omega}^{T})_{32} & ({\Omega}^{T})_{33} \end{bmatrix} =-\begin{bmatrix} {\Omega}_{11} & {\Omega}_{12} & {\Omega}_{13} \\ \\ {\Omega}_{21} & {\Omega}_{22} & {\Omega}_{23} \\ \\ {\Omega}_{31} & {\Omega}_{32} & {\Omega}_{33} \end{bmatrix} =-{\Omega}_1\\\ \\ %%%%%%%%%%%% ({\Omega}^{T})_{i}^{\bullet j}=-{\Omega}_{i}^{\bullet j} \Longrightarrow {\Omega}_{3}=({\Omega}^T)_{2}=[({\Omega}^{T})_{i}^{\bullet j}] =\begin{bmatrix} ({\Omega}^{T})_{1}^{\bullet 1} & ({\Omega}^{T})_{2}^{\bullet 1} & ({\Omega}^{T})_{3}^{\bullet 1} \\ \\ ({\Omega}^{T})_{1}^{\bullet 2} & ({\Omega}^{T})_{2}^{\bullet 2} & ({\Omega}^{T})_{3}^{\bullet 2} \\ \\ ({\Omega}^{T})_{1}^{\bullet 3} & ({\Omega}^{T})_{2}^{\bullet 3} & ({\Omega}^{T})_{3}^{\bullet 3} \end{bmatrix} =-\begin{bmatrix} {\Omega}_{1}^{\bullet 1} & {\Omega}_{2}^{\bullet 1} & {\Omega}_{3}^{\bullet 1} \\ \\ {\Omega}_{1}^{\bullet 2} & {\Omega}_{2}^{\bullet 2} & {\Omega}_{3}^{\bullet 2} \\ \\ {\Omega}_{1}^{\bullet 3} & {\Omega}_{2}^{\bullet 3} & {\Omega}_{3}^{\bullet 3} \end{bmatrix} =-{\Omega}_2 \\\ \\ %%%%%%%%%%%% ({\Omega}^{T})^{i}_{\bullet j}=-{\Omega}^{i}_{\bullet j} \Longrightarrow {\Omega}_2=({\Omega}^T)_{3}=[({\Omega}^{T})^{i}_{\bullet j}] =\begin{bmatrix} ({\Omega}^{T})^{1}_{\bullet 1} & ({\Omega}^{T})^{1}_{\bullet 2} & ({\Omega}^{T})^{1}_{\bullet 3} \\ \\ ({\Omega}^{T})^{2}_{\bullet 1} & ({\Omega}^{T})^{2}_{\bullet 2} & ({\Omega}^{T})^{2}_{\bullet 3} \\ \\ ({\Omega}^{T})^{3}_{\bullet 2} & ({\Omega}^{T})^{3}_{\bullet 2} & ({\Omega}^{T})^{3}_{\bullet 3} \end{bmatrix} =-\begin{bmatrix} {\Omega}^{1}_{\bullet 1} & {\Omega}^{1}_{\bullet 2} & {\Omega}^{1}_{\bullet 3} \\ \\ {\Omega}^{2}_{\bullet 1} & {\Omega}^{2}_{\bullet 2} & {\Omega}^{2}_{\bullet 3} \\ \\ {\Omega}^{3}_{\bullet 2} & {\Omega}^{3}_{\bullet 2} & {\Omega}^{3}_{\bullet 3} \end{bmatrix} =-{\Omega}_{3} \\\ \\ %%%%%%%%%%%% ({\Omega}^{T})^{ij}=-{\Omega}^{ij} \Longrightarrow ({\Omega}_4)^T=({\Omega}^T)_{4}=[({\Omega}^{T})^{ij}] =\begin{bmatrix} ({\Omega}^{T})^{11} & ({\Omega}^{T})^{12} & ({\Omega}^{T})^{13} \\ \\ ({\Omega}^{T})^{21} & ({\Omega}^{T})^{22} & ({\Omega}^{T})^{23} \\ \\ ({\Omega}^{T})^{31} & ({\Omega}^{T})^{32} & ({\Omega}^{T})^{33} \end{bmatrix} =-\begin{bmatrix} {\Omega}^{11} & {\Omega}^{12} & {\Omega}^{13} \\ \\ {\Omega}^{21} & {\Omega}^{22} & {\Omega}^{23} \\ \\ {\Omega}^{31} & {\Omega}^{32} & {\Omega}^{33} \end{bmatrix} =-{\Omega}_{4} (ΩT)ij=Ωij(Ω1)T=(ΩT)1=[(ΩT)ij]= (ΩT)11(ΩT)21(ΩT)31(ΩT)12(ΩT)22(ΩT)32(ΩT)13(ΩT)23(ΩT)33 = Ω11Ω21Ω31Ω12Ω22Ω32Ω13Ω23Ω33 =Ω1 (ΩT)ij=ΩijΩ3=(ΩT)2=[(ΩT)ij]= (ΩT)11(ΩT)12(ΩT)13(ΩT)21(ΩT)22(ΩT)23(ΩT)31(ΩT)32(ΩT)33 = Ω11Ω12Ω13Ω21Ω22Ω23Ω31Ω32Ω33 =Ω2 (ΩT)ji=ΩjiΩ2=(ΩT)3=[(ΩT)ji]= (ΩT)11(ΩT)12(ΩT)23(ΩT)21(ΩT)22(ΩT)23(ΩT)31(ΩT)32(ΩT)33 = Ω11Ω12Ω23Ω21Ω22Ω23Ω31Ω32Ω33 =Ω3 (ΩT)ij=Ωij(Ω4)T=(ΩT)4=[(ΩT)ij]= (ΩT)11(ΩT)21(ΩT)31(ΩT)12(ΩT)22(ΩT)32(ΩT)13(ΩT)23(ΩT)33 = Ω11Ω21Ω31Ω12Ω22Ω32Ω13Ω23Ω33 =Ω4可见,反对称二阶张量 Ω \bold{{\Omega}} Ω Ω 1 、 Ω 4 {\Omega}_1、{\Omega}_4 Ω1Ω4 矩阵为反对称矩阵且 Ω 2 = − Ω 3 {\Omega}_2=-{\Omega}_3 Ω2=Ω3,但 Ω 2 、 Ω 3 {\Omega}_2、{\Omega}_3 Ω2Ω3 一般并不是反对称矩阵

3. 二阶张量的行列式与矩阵的行列式

二阶张量对应的四种矩阵具有不同的行列式值,根据四种矩阵间的转换关系,有:
d e t ( τ 1 ) = g   d e t ( τ 2 ) = g   d e t ( τ 3 ) = g 2   d e t ( τ 4 ) ( 1 ) det(\tau_{1})=g\ det(\tau_{2})=g\ det(\tau_{3})=g^2\ det(\tau_{4})\qquad(1) det(τ1)=g det(τ2)=g det(τ3)=g2 det(τ4)(1)通常,定义张量 T \bold{T} T的行列式为 d e t ( T ) = d e t ( τ 3 ) det(\bold{T})=det(\tau_3) det(T)=det(τ3),根据行列式的定义及(1)式可知:互为转置的张量行列式相等,即 d e t ( T T ) = d e t ( T ) det(\bold{T^T})=det(\bold{T}) det(TT)=det(T)
二阶张量行列式的几何意义:通过 T 对矢量组进行映射,映射前后矢量组所构成的平行六面体的体积比为 d e t ( T ) det(\bold T) det(T)。证明如下:

行列式交换行/列与行列式的置换符号表述关系知
T ∙ p i T ∙ q j T ∙ l k e i j k = T ∙ 1 i T ∙ 2 j T ∙ 3 k e i j k e p q l = d e t ( [ T ∙ j i ] ) e p q l T^{i}_{\bullet p}T^{j}_{\bullet q}T^{k}_{\bullet l}e_{ijk} =T^{i}_{\bullet 1}T^{j}_{\bullet 2}T^{k}_{\bullet 3}e_{ijk}e_{pql} =det([T^{i}_{\bullet j}])e_{pql} TpiTqjTlkeijk=T1iT2jT3keijkepql=det([Tji])epql那么,
[ T ∙ u ⃗ T ∙ v ⃗ T ∙ w ⃗ ]   = ( T ∙ p i u p ) ( T ∙ q j v q ) ( T ∙ l k w l ) ϵ i j k   = ( T ∙ p i T ∙ q j T ∙ l k e i j k ) ( u p v q w l ) g   = d e t ( [ T ∙ j i ] ) ( u p v q w l g e p q l )   = d e t ( [ T ∙ j i ] ) ( u p v q w l ϵ p q l )   = d e t ( τ 3 ) [ u ⃗ v ⃗ w ⃗ ] \begin{aligned} &\quad\begin{bmatrix}T\bullet\vec{u} & T\bullet\vec{v} & T\bullet\vec{w}\end{bmatrix}\\\ \\ &=(T^{i}_{\bullet p}u^p)(T^{j}_{\bullet q}v^q)(T^{k}_{\bullet l}w^l)\epsilon_{ijk}\\\ \\ &=(T^{i}_{\bullet p}T^{j}_{\bullet q}T^{k}_{\bullet l}e_{ijk})(u^pv^qw^l)\sqrt{g}\\\ \\ &=det([T^{i}_{\bullet j}])(u^pv^qw^l\sqrt{g}e_{pql})\\\ \\ &=det([T^{i}_{\bullet j}])(u^pv^qw^l\epsilon_{pql})\\\ \\ &=det(\tau_3)\begin{bmatrix}\vec{u} & \vec{v} & \vec{w}\end{bmatrix} \end{aligned}      [Tu Tv Tw ]=(Tpiup)(Tqjvq)(Tlkwl)ϵijk=(TpiTqjTlkeijk)(upvqwl)g =det([Tji])(upvqwlg epql)=det([Tji])(upvqwlϵpql)=det(τ3)[u v w ]

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐