斯坦福大学-源地址: CS231A: Computer Vision, From 3D Reconstruction to Recognition

CS231AGitHub笔记:https://github.com/kenjihata/cs231a-notes

代码和笔记:https://github.com/chizhang529/cs231a

作业答案:https://github.com/zyxrrr/cs231a

CSDN笔记博客:https://blog.csdn.net/qq_40166295/article/details/104031016

 

目录

1. 课程简介

2. 课程要求

Prerequisites

先决条件

3. 课程总览


1. 课程简介

An introduction to the concepts and applications in computer vision. Topics include: cameras and projection models, low-level image processing methods such as filtering and edge detection; mid-level vision topics such as segmentation and clustering; shape reconstruction from stereo, as well as high-level vision tasks such as object recognition, scene recognition, face detection and human motion categorization. Prerequisites: linear algebra, basic probability and statistics

计算机视觉的概念及应用介绍。主题包括: 相机与投影模型、低层图像处理方法如过滤与边缘检测、中层视觉主题如分割与聚类、立体形状重建,以及高层视觉任务如目标识别、场景识别、人脸检测与人体运动分类。先修条件: 线性代数,基本概率统计。

2. 课程要求

Prerequisites

先决条件

  • Proficiency in Python, high-level familiarity in C/C++ 熟练掌握 Python 语言,高度熟悉 c/c + +
    All class assignments will be in Python (and use numpy) (CS231N provides a very nice tutorial 所有的类分配都将使用 Python (并使用 numpy)(CS231N 提供了一个非常好的教程here 这里 for those who aren't as familiar with Python), but some of the deep learning libraries that you may want to use for your projects are written in C++. If you have a lot of programming experience but in a different language (e.g. C/C++/Matlab/Javascript) you will probably be fine. 对于那些不太熟悉 Python 的人) ,但是一些深度学习库是用 c + + 编写的,你可能想用它们来完成你的项目。如果你有丰富的编程经验,但使用不同的语言(例如 c/c + +/Matlab/Javascript) ,你可能会做得很好
  • College Calculus, Linear Algebra 大学微积分,线性代数 (e.g. MATH 19 or 41, MATH 51) (例如,MATH 19或41,MATH 51)
    You should be comfortable taking derivatives and understanding matrix vector operations and notation. 你应该可以很轻松地计算导数,理解矩阵向量运算和符号
  • Basic Probability and Statistics 基本概率统计 (e.g. CS 109 or other stats course) (例如 cs109或其他统计学课程)
    You should know basics of probabilities, gaussian distributions, mean, standard deviation, etc. 你应该知道概率的基本知识,高斯分布,平均值,标准差,等等
  • Equivalent knowledge of CS131, CS221, or CS229. 具备 CS131、 CS221或 CS229的相关知识
    You should be familiar with basic machine learning or computer vision techniques. 你应该熟悉基本的机器学习或计算机视觉技术

3. 课程总览

LectureDateTitleDownloadReadingInstructor
11/08/2018Introduction[slides] Silvio Savarese
 1/08/2018Problem Set 0 Released[pdf] [code]  
21/10/2018Camera Models[slides][FP] Ch.1
[HZ] Ch.6
Silvio Savarese
 1/10/2018Problem Set 1 Released[pdf] [code]  
TA 11/12/2018Python Introduction and Linear Algebra Review[slides]Any linear algebra textbook
[HZ] ch.2,4
Kuan Fang
 1/15/2018Martin Luther King Jr. Day (No class)   
31/17/2018Camera Models II and Camera Calibration[slides][FP] Ch.1
[HZ] Ch.7
Silvio Savarese
 1/17/2018Problem Set 0 Due : 11:59PM   
TA 21/19/2018Problem Set 1 Review[slides] Danfei Xu
41/22/2018Single View Metrology[slides][HZ] Ch.2,3,8
[Hoiem & Savarese]
Ch.2
Silvio Savarese
51/24/2018Epipolar Geometry[slides][HZ] Ch.4,9,11
[FP] Ch.7,8
Silvio Savarese
 1/26/2018Problem Set 2 Released[pdf][code]  
 1/26/2018Problem Set 1 Due: 11:59PM   
TA 31/26/2018Course Project Outline[slides] Amir Sadeghian
61/29/2018Stereo Systems[slides][HZ] Ch.9, 18
[FP] Ch.7,8
Silvio Savarese
71/31/2018Structure from Motion[slides][HZ] Ch.10,18,19
[FP] Ch.13
[Szelisky] Ch.7
Silvio Savarese
 2/01/2018Project Proposal Due: 11:59PM   
TA 42/02/2018Problem Set 2 Review[slides] Fei Xia
82/05/2018Fitting and Matching[slides][HZ] Ch.4,11
[FP] Ch.10
Animesh Garg
92/07/2018Detectors and Descriptors[slides] Marynel Vazquez
TA 52/09/2018Computer Vision Libraries[slides] Amir Sadeghian
 2/09/2018Problem Set 2 Due: 11:59PM   
 2/09/2018Problem Set 3 Released[pdf] [code]  
102/12/2018Active Stereo & Volumetric Stereo[slides][Szelisky] Ch.11
[Savarese et al.]
[Seitz et al.]
Silvio Savarese
112/14/2018Introduction to Recognition : Image Classification[slides][FP] Ch.6,16
[Hosang et. al.]
Silvio Saverese
TA 62/16/2018Problem Set 3 Review[slides] Kuan Fang
 2/19/2018Presidents' Day (No class)   
122/21/2018Image Classification & 2D Object Detection[slides] Silvio Savarese
TA 72/23/2018Introduction to Convolutional Neural Networks[slides] Julian Gao
132/26/20182D Scene Understanding[slides] Christopher B. Choy
 2/26/2018Project Milestone Due: 11:59PM   
 2/28/2018Problem Set 3 Due: 11:59PM   
142/28/20183D Object Detection[slides] Silvio Savarese
 3/01/2018Problem Set 4 Released[pdf][code]  
TA 83/02/2018Midterm Review[slides] Fei Xia
 3/05/2018Midterm[midterm 2017][midterm 2017 with solution]The midterm is open book and open note.
No electronics will be allowed.
The midterm will be held in class (Skilling Auditorium)
 
153/07/2018Learning Visual Representations by Neural Networks[slides] Amir Zamir
TA 93/09/2018Problem Set 4 Review[slides] Danfei Xu
163/12/20183D Scene Understanding[slides] Silvio Savarese
 3/14/2018No class due to ECCV deadline   
TA 103/16/2018Final Project Presentation Guidelines[slides] Kuan Fang
 3/17/2018Problem Set 4 Due: 11:59PM   
 3/19/2018Project Presentations 12:30pm - 2:30pm, Room 1: Oshman 125 map Room 2: 450 Serra Mall, 300-300 map 
 3/22/2018Project Final Report Due: 11:59PM   
Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐