FPGA搭建PCIE3.0通信架构简单读写测试,基于XDMA中断模式,提供3套工程源码和技术支持
FPGA搭建PCIE3.0通信架构简单读写测试,基于XDMA中断模式,提供3套工程源码和技术支持
目录
FPGA搭建PCIE3.0通信架构简单读写测试,基于XDMA中断模式,提供3套工程源码和技术支持
1、前言
FPGA实现PCIE数据传输现状;
目前基于Xilinx系列FPGA的PCIE通信架构主要有以下2种,一种是简单的、傻瓜式的、易于开发的、对新手友好的XDMA架构,该架构对PCIE协议底层做了封装,并加上了DMA引擎,使得使用的难度大大降低,加之Xilinx提供了配套的Windows和Linux系统驱动和上位机参考源代码,使得XDMA一经推出就让工程师们欲罢不能;另一种是更为底层的、需要设计者有一定PCIE协议知识的、更易于定制化开发的7 Series Integrated Block for PCI Express架构,该IP实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;本设计采用第一种方案,使用XDMA的中断模式实现PCIE通信;本架构既有简单的测速实验,也有视频采集应用;
工程概述
本设计使用Xilinx系列FPGA为平台,调用Xilinx官方的XDMA方案搭建基中断模式下的PCIE3.0通信架构;需要注意的是,并不是所有FPGA都支持PCIE3.0,以Xilinx为例,只有Virtex7及其以上或者UltraScale系列高端FPGA才支持;低端FPGA只能支持到PCIE2.0,关于PCIE2.0的设计方案,可以参考我博客主页,有丰富案例;XDMA的数据缓存有两条通路,一条基于DDR3的大批量数据缓存通路,该条通路一般用作图像、AD数据等缓存,适用于使用板载DDR作为缓存的大量批量数据传输方案;另一条基于BRAM的小批量用户数据缓存通路,该条通路一般用作用户控制数据的缓存,适用于使用FPGA内部BRAM作为缓存的大量批量数据传输方案;XDMA配置为中断模式,配合手写的XDMA中断模块使用,该中断模块主要负责与用户逻辑交互,指示用户逻辑可以发起中断,并将用户逻辑发起的中断转发给XDMA;用户逻辑侧设置了一个定时器,大约间隔8ms发起一次XDMA中断;同时提供一套基于X86架构的PC端的PCIE数据读写软件,执行软件可发起对FPGA侧的PCIE数据读写操作,以验证这套PCIE通信架构的正确性;这套架构设计简单,测试更为简单,不需要上位机的参与,仅仅在CMD中执行一系列指令即可完美测试通信质量,适用于PCIE设计的快速验证和开发;本博客提供3套工程源码,具体如下:
现对上述7套工程源码做如下解释,方便读者理解:
工程源码1
开发板FPGA型号为Xilinx–>Virtex7–690T–xc7vx690tffg1761-3;FPGA内部设置了一个定时器,间隔8ms产生一次上升沿作为XDMA用户逻辑中断输出给XDMA;XDMA配置了两路数据缓存通道,一条是AXI4-FULL接口的DDR数据缓存通道,以板载的DDR3作为缓存介质,用于大批量数据传输,另一条是AXI4-Lite接口的BRAM数据缓存通道,以FPGA内部BRAM作为缓存介质,用于少量用户数据传输;利用上位机软件实现XDMA数据读写测试,包括批量数据和少量用户数据读写,此外还进行XDMA用户中断测试;提供Windows和Linux系统驱动和对应的测试软件;板子PCIE支持PCIE3.0,为8 Lane,XDMA配置为单Lane线速率8GT/s;用于快速搭建并验证基于FPGA_XDMA中断模式的PCIE数据通信架构;
工程源码2
开发板FPGA型号为Xilinx–>Kintex UltraScale–xcku060-ffva1156-2-i;FPGA内部设置了一个定时器,间隔8ms产生一次上升沿作为XDMA用户逻辑中断输出给XDMA;XDMA配置了两路数据缓存通道,一条是AXI4-FULL接口的DDR数据缓存通道,以板载的DDR4作为缓存介质,用于大批量数据传输,另一条是AXI4-Lite接口的BRAM数据缓存通道,以FPGA内部BRAM作为缓存介质,用于少量用户数据传输;利用上位机软件实现XDMA数据读写测试,包括批量数据和少量用户数据读写,此外还进行XDMA用户中断测试;提供Windows和Linux系统驱动和对应的测试软件;板子PCIE支持PCIE3.0,为8 Lane,XDMA配置为单Lane线速率8GT/s;用于快速搭建并验证基于FPGA_XDMA中断模式的PCIE数据通信架构;
工程源码3
开发板FPGA型号为Xilinx–>Kintex UltraScale±-xcku3p-ffva676-2-i;FPGA内部设置了一个定时器,间隔8ms产生一次上升沿作为XDMA用户逻辑中断输出给XDMA;XDMA配置了两路数据缓存通道,一条是AXI4-FULL接口的DDR数据缓存通道,以板载的DDR4作为缓存介质,用于大批量数据传输,另一条是AXI4-Lite接口的BRAM数据缓存通道,以FPGA内部BRAM作为缓存介质,用于少量用户数据传输;利用上位机软件实现XDMA数据读写测试,包括批量数据和少量用户数据读写,此外还进行XDMA用户中断测试;提供Windows和Linux系统驱动和对应的测试软件;板子PCIE支持PCIE3.0,为4 Lane,XDMA配置为单Lane线速率8GT/s;用于快速搭建并验证基于FPGA_XDMA中断模式的PCIE数据通信架构;
本文详细描述了FPGA搭建PCIE3.0通信架构简单读写测试的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做项目开发,可应用于医疗、军工等行业的高速接口领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;
免责声明
本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。
2、相关方案推荐
我已有的PCIE方案
我的主页有PCIE通信专栏,该专栏基于XDMA的轮询模式实现与QT上位机的数据交互,既有基于RIFFA实现的PCIE方案,也有基于XDMA实现的PCIE方案;既有简单的数据交互、测速,也有应用级别的图像采集传输,以下是专栏地址:
点击直接前往
此外,我的主页有中断模式的PCIE通信专栏,该专栏基于XDMA的中断模式实现与QT上位机的数据交互,以下是专栏地址:
点击直接前往
此外,还有基于RIFFA架构的PCIE通信专栏,以下是专栏地址:
点击直接前往
本博客方案的PCIE2.0版本
本博客详细描述了FPGA搭建PCIE3.0通信架构简单读写测试的设计方案,但并不是所有FPGA都支持PCIE3.0,对于低端FPGA而言,PCIE2.0或许具有更多应用场景,恰好之前写过一篇PCIE2.0方案,设计基本与本片博客一样,只是XDMA配置的PCIE版本不一样,感兴趣的可以查看之前的博客,博客链接如下:
点击直接前往
3、PCIE基础知识
PCIe 总线架构与以太网的 OSI 模型类似,是一种分层协议架构,分为事务层(Transaction Layer)、数据链路层(Data Link Layer) 和物理层(Physical Layer)。这些层中的每一层都分为两部分:一部分处理出站(要发送的)信息,另一部分处理入站(接收的)信息,如下图:
事务层
事务层的主要责任是事务层包 TLP(Transaction Layer Packet)的组装和拆卸。事务层接收来自 PCIe 设备核心层的数据,并将其封装为 TLP。TLP 用于传达事务,例如读取和写入,以及确定事件的类型。事务层还负责管理 TLP 的基于信用的流控制。每个需要响应数据包的请求数据包都作为拆分事务实现。每个数据包都有一个唯一标识符,该标识符使响应数据包可以定向到正确的始发者。数据包格式支持不同形式的寻址,具体取决于事务的类型(内存、I/O、配置和消息)。数据包可能还具有诸如 No Snoop、Relaxed Ordering 和基于 ID 的排序(IDO)之类的属性。事务层支持四个地址空间:包括三个 PCI 地址空间(内存、I/O 和配置)并添加消息空间。该规范使用消息空间来支持所有先前 PCI 的边带信号,例如中断、电源管理请求等,作为带内消息事务。
数据链路层
数据链路层充当事务层和物理层之间的中间阶段。数据链路层的主要职责包括链路管理和数据完整性,包括错误检测和错误纠正。数据链路层的发送方接受事务层组装的 TLP,计算并应用数据保护代码和 TLP序列号,以及将它们提交给物理层以在链路上传输。接收数据链路层负责检查接收到的 TLP 的完整性,并将它们提交给事务层以进行进一步处理。在检测到 TLP 错误时,此层负责请求重发 TLP,直到正确接收信息或确定链路失败为止。数据链路层还生成并使用用于链路管理功能的数据包。为了将这些数据包与事务层(TLP)使用的数据包区分开,当指代在数据链路层生成和使用的数据包时,将使用术语“数据链路层数据包(DLLP)”。
物理层
PCIe 总线的物理层为 PCIe 设备间的数据通信提供传送介质,为数据传送提供可靠的物理环境。物理层包括用于接口操作的所有电路,包括驱动器和输入缓冲器、并行至串行和串行至并行转换、PLL 和阻抗匹配电路。它还包括与接口初始化和维护有关的逻辑功能。物理层以实现特定的格式与数据链路层交换信息。该层负责将从数据链路层接收的信息转换为适当的序列化格式,并以与连接到链路另一端的设备兼容的频率和通道宽度在 PCI Express 链路上传输该信息。物理层是 PCIe 体系结构最重要,也是最难以实现的组成部分(该层对用户透明,开发 PCIe 程序时无需关心)。PCIe 总线的物理层定义了 LTSSM (Link Training and Status State Machine)状态机,PCIe 链路使用该状态机管理链路状态,并进行链路训练、链路恢复和电源管理。PCIe 总线使用端到端的连接方式,在一条PCIe 链路的两端只能各连接一个设备,这两个设备互为数据发送端和数据接收端。由于 PCIe 是支持全双工通信的,所以发送端和接收端中都含有TX (发送逻辑) 和RX (接收逻辑)。在PCIe 总线的物理链路的一个数据通路(Lane) 中,有两组差分信号,共4 根信号线组成。其中发送端的TX 与接收端的RX 使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX 与接收端的TX 使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。一个PCIe 链路可以由多个Lane 组成。目前PCIe 链路可以支持1、2、4、8、12、16 和32 个Lane,即×1、×2、×4、×8、×12、×16 和×32 宽度的PCIe 链路。每一个Lane 上使用的总线频率与PCIe 总线使用的版本相关。
4、工程详细设计方案
工程设计原理框图
工程设计原理框图如下:
XDMA配置及使用
根据Xilinx官方手册,XDMA框图如下:
由图可知,XDMA封装了Integrated Block for PCI Express IP,不仅完成了事务层的组包解包,还添加了完整的 DMA 引擎;XDMA 一般情况下使用AXI4 接口,AXI4 接口可以加入到系统总线互联,适用于大数据量异步传输,而且通常情况下使用 XDMA 都会使用到 BRAM 或 DDR 内存;AXI4-Stream 接口适用于低延迟数据流传输。XDMA 允许在主机内存和 DMA 子系统之间移动数据。它通过对包含有关要传输的数据的源、目标和数量的信息的“描述符”进行操作来实现此目的。这些直接内存传输既可以用于主机到卡(Host to Card,H2C)的传输,也可以用与卡到主机(Card to Host,C2H)的传输。可以将 DMA 配置为由所有通道共享一个 AXI4 Master 接口,或者为每个启用的通道提供一个 AXI4-Stream 接口。内存传输是基于每个通道的描述符链接列表指定的,DMA 从主机内存和进程中获取这些链接列表。诸如描述符完成和错误之类的事件通过中断来发出信号。XDMA 还提供多达 16 条用户中断线,这些中断线会向主机生成中断。本设计需要配置为中断模式;如下图:
本设计XDMA线速率配置为8GT/s,这是PCIE3.0标准,如下:
XDMA详情参考《AXI Bridge for PCI Express Gen3 Subsystem Product Guide(PG194)》;
XDMA中断模块
XDMA中断模块和XDMA IP配合使用,XDMA中断模块主要执行两个任务,一是获取XDMA的状态,输出用户中断使能信号,以指示用户此时可以发起中断,该任务通过AXI_Lite接口与XDMA连接,其从机地址受PC端软件控制;二是转发用户中断给XDMA,当用户侧检测到XDMA处于可接受中断状态时,用户逻辑可以发起中断,XDMA中断模块将此中断转发给XDMA IP;将模块直接拖入Block Design中,显示如下:
数据缓存架构
如果你的FPGA资源够大,且传输的数据是大批量的,则选择DDR架构的数据缓存架构,比如传输图像、AD数据等等;如果你的FPGA开发板没有DDR颗粒,或者只需要传输的数据是小批量的,则选择BRAM架构的数据缓存架构,比如传输PCIE控制信息等;工程中将两种架构都设计了,以便于用户在根据自身FPGA开发板移植时具有选择性;如下:
用户逻辑
用户逻辑的作用就是发起中断,设置了一个定时器,大约间隔8ms发起一次XDMA中断;当然这只是做测试,如果是具体的数据传输则需要灵活改变,比如传输图像时,可以一帧图像传输完成作为发起中断的条件;在后续发布的博客中会有相应的介绍;核心代码如下:
Windows版本XDMA驱动安装
提供Windows和Linux系统驱动,本章节介绍Windows下XDMA驱动安装;
Windows下驱动安装步骤如下:友情提示,Windows下驱动秩序安装一次即可;
第一步:使系统禁用签名并进入测试模式,方法如下:
也可百度其他方法实现上述目的,完成后电脑屏幕右下角应有如下显示:
第二步:定位到驱动目录下,提供Windows7和Windows10两个版本驱动,由于我的电脑选择Windows10,如下:
单击鼠标右键安装即可,如下:
第三步:下载FPGA工程bit到FPGA开发板,然后重启电脑,打开我的电脑–>管理–>设备管理器,应看到如下设备:
Linux版本XDMA驱动安装
提供Windows和Linux系统驱动,本章节介绍Linux下XDMA驱动安装;
Linux下驱动安装步骤如下:友情提示,Linux下,每次下载FPGA bit后都需要重启电脑才能安装驱动;
进入到Linux驱动目录下,一次执行以下两条指令即可安装,如下:
• 驱动编译终端指令:make -j8
•驱动安装终端指令:sudo insmod xdma.ko
测试应用程序
测试应用程序由编译XDMA驱动时自动生成,Windows版本驱动测试应用程序位置如下:
Linux版本驱动测试应用程序位置如下:
该测试程序主要测试内容包括XDMA大批量数据读写测试、XDMA小批量用户数据读写测试、XDMA中断测试等;详细测试方法参考后面的《上板调试》章节;
工程源码架构
提供3套工程源码,以工程源码1为例,工程Block Design设计如下:
提供3套工程源码,以工程源码1为例,综合后的工程源码架构如下:
PCIE上板调试注意事项
1:必须先安装本博提供的XDMA驱动,详情请参考第4章节的《XDMA驱动及其安装》,Windows版本驱动只需安装一次;
2:Windows版本下载FPGA工程bit后需要重启电脑,电脑才能识别到XDMA驱动;程序固化后也需要重启电脑;Linux版本每次载FPGA工程bit后都需要重启电脑,都需要安装XDMA驱动;
3:FPGA板卡插在主机上后一般不需要额外供电,如果你的板子元器件较多功耗较大,则需要额外供电,详情咨询开发板厂家,当然,找我买板子的客户可以直接问我;
4:PCIE调试需要电脑主机,但笔记本电脑理论上也可以外接出来PCIE,详情百度自行搜索一下,电脑主机PCIE插槽不方便操作时可以使用延长线接出来,某宝有卖;
5、vivado工程源码1详解–>Virtex7-690T-PCIE3.0 X8版本
开发板FPGA型号:Xilinx–690T–xc7vx690tffg1761-3;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
PCIE详情:PCIE3.0版本,X8,8GT/s单lane线速率;
PCIE底层方案:XDMA,中断模式,配置4条用户中断;
数据缓存架构:DDR3+BRAM;
实现功能:FPGA搭建PCIE3.0通信架构简单读写测试;
工程作用:此工程目的是让读者掌握FPGA搭建PCIE3.0通信架构简单读写测试的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第4章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
6、vivado工程源码2详解–>KU060-PCIE3.0 X8版本
开发板FPGA型号:Xilinx–Kintex UltraScale–xcku060-ffva1156-2-i;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
PCIE详情:PCIE3.0版本,X8,8GT/s单lane线速率;
PCIE底层方案:XDMA,中断模式,配置4条用户中断;
数据缓存架构:DDR4+BRAM;
实现功能:FPGA搭建PCIE3.0通信架构简单读写测试;
工程作用:此工程目的是让读者掌握FPGA搭建PCIE3.0通信架构简单读写测试的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
7、vivado工程源码3详解–>KU3P-PCIE3.0 X4版本
开发板FPGA型号:Xilinx–Kintex UltraScale±-xcku3p-ffva676-2-i;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
PCIE详情:PCIE3.0版本,X4,8GT/s单lane线速率;
PCIE底层方案:XDMA,中断模式,配置4条用户中断;
数据缓存架构:DDR4+BRAM;
实现功能:FPGA搭建XDMA中断模式的PCIE通信架构下的简单读写测试;
工程作用:此工程目的是让读者掌握FPGA搭建XDMA中断模式的PCIE通信架构的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
8、工程移植说明
vivado版本不一致处理
1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
3:如果你的vivado版本高于本工程vivado版本,解决如下:
打开工程后会发现IP都被锁住了,如下:
此时需要升级IP,操作如下:
FPGA型号不一致处理
如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;
其他注意事项
1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;
9、上板调试验证
准备工作
需要准备的器材如下:
FPGA开发板,没有开发板可以找本博提供;
带PCIE卡槽的电脑主机;
我的开发板了连接如下:
XDMA大批量数据读写测试演示
XDMA大批量数据通过XDMA的AXI4-FULL接口传输,一般连接到FPGA的MIG到板载DDR3,FPGA逻辑资源有限时也可连接至BRAM;
打开Windows CMD指令框,进入XDMA测试程序目录,并查看测试程序指令用法,如下:
• 操作指令:xdma_rw.exe
批量数据写操作测试:
使用 h2c_0 设备以二进制的形式读取文件 datafile4k.bin 写入到 BRAM 内存地址 0x0000000 长度为 4096 字节,如下:
• 操作指令:xdma_rw.exe h2c_0 write 0x0000000 -b -f datafile4K.bin -l 4096
对应的Linux下的测试指令如下:Linux下的测试需要进入root账户模式
• 操作指令:./dma_from_device -d /dev/xdma0_c2h_0 -f ./test.bin -s 4096 -a 0 -c 1
批量数据读操作测试:
使用 c2h_0 设备从BRAM 内存地址 0x0000000 读取长度为 4096 字节数据,并写入到datafile4K_recv.bin中保存;如下:
• 操作指令:xdma_rw.exe c2h_0 read 0x0000000 -b -f datafile4K_recv.bin -l 4096
对应的Linux下的测试指令如下:Linux下的测试需要进入root账户模式
• 操作指令:./dma_to_device -d /dev/xdma0_h2c_0 -f ./test.bin -s 4096 -a 0 -c 1
您可以使用winhex等软件来检查一下datafile4k.bin和datafile4K_recv.bin这两个文件数据是否一致;
XDMA小批量用户数据读写测试演示
XDMA小批量用户数据通过XDMA的AXI4-Lite接口传输,一般连接到FPGA内置的BRAM;
小批量用户数据写操作测试:
向 BRAM 内存地址 0x10000写入0x11和0x22两个数据,如下:
• 操作指令:xdma_rw.exe user write 0x10000 0x11 0x22
小批量用户数据读操作测试:
从 BRAM 内存地址 0x10000依次读出两个数据并打印,如下:
• 操作指令:xdma_rw.exe user read 0x10000 -l 2
XDMA用户中断测试演示
XDMA用户中断测试为测试用户中断的专用测试软件,如下:
• 操作指令:xdma_event.exe
对应的Linux下的测试指令如下:Linux下的测试需要进入root账户模式
• 操作指令:sudo ./pcie_irq
10、福利:工程代码的获取
福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)