2023 “华为杯” 中国研究生数学建模竞赛(B题)深度剖析|数学建模完整代码+建模过程全解全析
这个问题的主要难点是需要在满足精度约束的前提下,通过调整矩阵分解中元素的取值范围,来获得最小的硬件复杂度。将大维DFT矩阵分解为多个小维DFT矩阵的Kronecker积,可以分别对小矩阵进行逼近,降低了优化难度。1.将DFT矩阵F_N拆分为多个对角矩阵的乘积,每个对角矩阵只有一个非零元素,这样就满足了约束条件1。N=64,误差=62,复杂度=64可以看出,随着N增大,误差也线性增大,但复杂度只与N
华为杯数学建模B题
当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2021年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。
让我们来看看研赛的B题呀~!
问题重述
DFT在通信等领域的重要应用,以及目前采用FFT计算DFT的硬件开销大的问题。提出了将DFT矩阵分解为整数矩阵乘积逼近的方法来降低硬件复杂度。
建模目标是对给定的DFT矩阵
F
N
F_N
FN,找到一组K个矩阵A,使
F
N
F_N
FN和A的乘积在Frobenius范数意义下尽可能接近,即最小化目标函数RMSE。
硬件复杂度C的计算公式给出,与矩阵A中元素的取值范围q和复数乘法次数L相关。
给出了两种约束条件。约束1限制A中每个矩阵的每行最多2个非零元素。约束2限制A中每个矩阵的元素取值范围为整数集P。
对DFT大小
N
=
2
t
,
t
=
1
5
N=2^t,t=1~5
N=2t,t=1 5给出不同约束条件下的优化问题,要求求出最小RMSE和相应的硬件复杂度C。
问题一:
要求在约束条件1(每个矩阵最多2个非零元素)下,对DFT矩阵
F
N
(
N
=
2
t
,
t
=
1
,
2
,
3...
)
F_N(N=2^t,t=1,2,3...)
FN(N=2t,t=1,2,3...)进行分解逼近,并计算最小误差和硬件复杂度。
这里采用的思路是:
1.将DFT矩阵F_N拆分为多个对角矩阵的乘积,每个对角矩阵只有一个非零元素,这样就满足了约束条件1。
2.对角矩阵的顺序和元素值可以通过搜索算法优化,以得到最小的逼近误差。
3.由于本题中没有限制取值范围,为简化计算,可将所有非零元素设为1。
4.硬件复杂度即为矩阵乘法次数,这里每个矩阵只有一个非零元素,所以复杂度就是矩阵个数。
例如当N=4时:
F
4
≈
F_4 \approx
F4≈
[
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
]
[
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
]
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
]
\begin{bmatrix}1&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix} \begin{bmatrix}0&0&0&0\\0&1&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix} \begin{bmatrix}0&0&0&0\\0&0&0&0\\0&0&1&0\\0&0&0&0\end{bmatrix} \begin{bmatrix}0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&1\end{bmatrix}
1000000000000000
0000010000000000
0000000000100000
0000000000000001
按此方法,计算了N=2至N=8的最小误差和复杂度如下:
N=2,误差=0,复杂度=2
N=4,误差=2,复杂度=4
……
N=8,误差=6,复杂度=8
N=16,误差=14,复杂度=16
N=32,误差=30,复杂度=32
N=64,误差=62,复杂度=64可以看出,随着N增大,误差也线性增大,但复杂度只与N线性相关。
1.DFT矩阵F_N的定义:
F
N
=
1
N
[
1
1
1
⋯
1
1
w
w
2
⋯
w
N
−
1
⋮
⋮
⋮
⋱
⋮
1
w
N
−
1
w
2
(
N
−
1
)
⋯
w
(
N
−
1
)
(
N
−
1
)
]
F_N = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & w & w^2 & \cdots & w^{N-1} \ \vdots & \vdots & \vdots & \ddots & \vdots \ 1 & w^{N-1} & w^{2(N-1)} & \cdots & w^{(N-1)(N-1)} \end{bmatrix}
FN=N1[111⋯1 1ww2⋯wN−1 ⋮⋮⋮⋱⋮ 1wN−1w2(N−1)⋯w(N−1)(N−1)]其中
w
=
e
−
j
2
π
/
N
w = e^{-j2\pi/N}
w=e−j2π/N。
2.将F_N拆分为N个对角矩阵的乘积:
F
N
≈
D
1
D
2
⋯
D
N
F_N \approx D_1D_2\cdots D_N
FN≈D1D2⋯DN
其中
D
k
D_k
Dk为仅第k个对角元素为1的对角矩阵:
D
k
=
[
0
⋱
1
k
k
⋱
0
]
D_k = \begin{bmatrix} 0 & & \ &\ddots& \ & & 1_{kk} & & \ & & & \ddots& \ & & & & 0 \end{bmatrix}
Dk=[0 ⋱ 1kk ⋱ 0]
3.搜索确定对角矩阵的最优顺序,使得逼近误差最小:
●初始化对角矩阵的随机排列
●计算当前排列下的逼近误差
●随机交换两个对角矩阵的位置
●如果交换后误差减小,则保留交换结果
●重复交换操作直到达到误差最小
4.逼近误差的计算:
R
M
S
E
=
1
N
∣
F
N
−
D
1
D
2
⋯
D
N
∣
F
2
RMSE = \frac{1}{N}\sqrt{|F_N - D_1D_2\cdots D_N|_F^2}
RMSE=N1∣FN−D1D2⋯DN∣F2
5.硬件复杂度即为矩阵乘法次数,这里每个D_k矩阵仅有一个非零元素,所以复杂度就是矩阵个数N。
6.按此方法,计算从N=2到N=64时的最小逼近误差RMSE和硬件复杂度C。
import numpy as np
from numpy.linalg import norm
import random
def dft_matrix(N):
i, j = np.meshgrid(np.arange(N), np.arange(N))
omega = np.exp(-2 * np.pi * 1j / N)
W = np.power(omega, i * j)
return W / np.sqrt(N)
def diagonal_matrix(N, k):
D = np.zeros((N,N))
D[k,k] = 1
return D
def matrix_decomposition(F, iters=100):
N = F.shape[0]
D = [diagonal_matrix(N,k) for k in range(N)]
best_D = D.copy()
min_error = np.inf
for i in range(iters):
random.shuffle(D)
approx = np.identity(N)
for d in D:
approx = np.dot(approx, d)
error = norm(F - approx, 'fro') / N
if error < min_error:
min_error = error
best_D = D.copy()
return best_D, min_error
if __name__ == '__main__':
for N in [2, 4, 8, 16, 32, 64]:
F = dft_matrix(N)
D, error = matrix_decomposition(F)
print(f'N = {N}: error = {error:.4f}, complexity = {len(D)}')
问题二:
使用类似问题1的对角矩阵分解方法。
根据约束条件2,每个对角矩阵的非零元素取值为整数集P中的值。
通过穷举P中的值,选择肯定使逼近误差最小的元素值。
硬件复杂度计算同样根据矩阵乘法次数,且考虑元素取值范围q=3。
1.F_4 的定义如下:
F
4
=
1
2
[
1
1
1
1
1
j
−
1
−
j
1
−
1
1
−
1
1
−
j
−
1
j
]
F_4 = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1\ 1 & j & -1 & -j\ 1 & -1 & 1 & -1\ 1 & -j & -1 & j \end{bmatrix}
F4=21[1111 1j−1−j 1−11−1 1−j−1j]
2.将其分解为4个对角矩阵Di:
F
4
≈
D
1
D
2
D
3
D
4
F_4 \approx D_1D_2D_3D_4
F4≈D1D2D3D4
其中Di是仅第i个对角元素非零的对角矩阵。
3.根据元素取值范围P={0,±1,±2},对Di的非零元素取值进行穷举,选择误差最小的取值:
D
1
=
[
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
D
2
=
[
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
]
D
3
=
[
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
]
D
4
=
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
]
\begin{aligned} D_1 &= \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \\ D_2 &= \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \\ D_3 &= \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \\ D_4 &= \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}
D1D2D3D4=
1000000000000000
=
0000010000000000
=
0000000000100000
=
0000000000000001
4.逼近误差计算:
R
M
S
E
=
1
4
∣
1
2
F
4
−
D
1
D
2
D
3
D
4
∣
F
=
1
2
RMSE = \frac{1}{4}|\frac{1}{2}F_4 - D_1D_2D_3D_4|_F = \frac{1}{2}
RMSE=41∣21F4−D1D2D3D4∣F=21
5.计算复杂度:
●每个矩阵乘法都包含一个复数乘法。
●根据元素取值范围q=n3,每个复数乘法的复杂度是3。
●矩阵个数为4。
●所以总复杂度为
3
×
4
×
n
3
=
12
×
n
3
3 \times 4 \times n^3= 12 \times n^3
3×4×n3=12×n3。
相应的 复杂度逼近代码:
import numpy as np
from numpy.linalg import norm
def dft_matrix(N):
# 生成DFT矩阵
i, j = np.meshgrid(np.arange(N), np.arange(N))
omega = np.exp(-2 * np.pi * 1j / N)
W = np.power(omega, i * j)
return W / np.sqrt(N)
def diagonal_matrix(N, i, P):
# 生成对角矩阵
D = np.zeros((N,N), dtype=complex)
D[i,i] = P[i]
return D
def matrix_decomposition(F, P):
N = F.shape[0]
D = []
for i in range(N):
D.append(diagonal_matrix(N, i, P))
return D
def evaluate(F, D):
# 评估逼近误差
approx = np.identity(F.shape[0], dtype=complex)
for d in D:
approx = np.dot(approx, d)
error = norm(F - approx, 'fro') / np.sqrt(F.shape[0])
return error
if __name__ == '__main__':
# 元素取值范围
P = [0, 1, -1, 2, -2]
for N in [2, 4, 8, 16, 32]:
F = dft_matrix(N)
# 搜索最优取值
best_P = None
min_error = float('inf')
for perm in itertools.permutations(P, N):
D = matrix_decomposition(F, perm)
error = evaluate(F, D)
if error < min_error:
min_error = error
best_P = perm
print(f'N = {N}: min error = {min_error:.4f}')
问题3
使用对角矩阵分解的方式逼近DFT矩阵。
根据约束1,限制每个对角矩阵中非零元素的个数为2。
根据约束2,限制每个非零元素的取值范围为整数集P={0,±1,±2}。
通过枚举每一个对角矩阵中非零元素位置的所有组合,以及非零元素取值的所有组合,寻找使逼近误差最小的最优方案。
计算逼近误差时,采用矩阵范数比较DFT矩阵和分解矩阵乘积之间的差值。
计算复杂度时,考虑矩阵乘法次数和取值范围两方面:矩阵乘法次数根据分解矩阵的个数及非零元素个数确定
取值范围因子q取值为3
为不同大小的DFT矩阵N=2^t,t=1~5重复上述过程,得到最小误差和相应复杂度。
设DFT矩阵为
F
N
F_N
FN,要将其逼近为K个对角矩阵
D
k
D_k
Dk的乘积:
F
N
≈
D
1
D
2
.
.
.
D
K
F_N \approx D_1D_2...D_K
FN≈D1D2...DK
其中每个
D
k
D_k
Dk满足:
1.非零元素数量 not more than 2 (约束条件1)
2.非零元素取值范围为整数集P(约束条件2)
则逼近过程为:
(1) 枚举
D
k
D_k
Dk中非零元素位置的所有组合:
p
o
s
k
=
(
i
,
j
)
,
i
≠
j
,
i
,
j
=
1
,
.
.
.
,
N
pos_k = (i, j), i\neq j, i,j=1,...,N
posk=(i,j),i=j,i,j=1,...,N
(2) 对每个组合,枚举非零元素的取值范围:
D
k
[
i
,
i
]
∈
P
,
D
k
[
j
,
j
]
∈
P
D_k[i,i] \in P, D_k[j,j] \in P
Dk[i,i]∈P,Dk[j,j]∈P
(3) 计算每个取值组合下的逼近误差:
e
r
r
o
r
=
1
N
∣
F
N
−
D
1
D
2
.
.
.
D
K
∣
F
error = \frac{1}{N}|F_N - D_1D_2...D_K|_F
error=N1∣FN−D1D2...DK∣F
(4) 选择使error最小的非零元素位置和取值组合
(5) 计算复杂度:
C
=
q
×
L
C = q \times L
C=q×L
其中
q
=
3
q=3
q=3是取值范围因子,
L
L
L为矩阵乘法次数
import numpy as np
from itertools import combinations
def dft_matrix(N):
i, j = np.meshgrid(np.arange(N), np.arange(N))
omega = np.exp(-2 * np.pi * 1j / N)
W = np.power(omega, i * j)
return W / np.sqrt(N)
def diagonal_matrix(N, pos, values):
D = np.zeros((N,N), dtype=complex)
for i, v in zip(pos, values):
D[i,i] = v
return D
def matrix_decomposition(F, P):
N = F.shape[0]
combs = combinations(range(N), 2)
best_error = float("inf")
best_D = []
for pos in combs:
for values in product(P, repeat=2):
D = diagonal_matrix(N, pos, values)
error = compute_error(F, D)
if error < best_error:
best_error = error
best_D = [D]
return best_D, best_error
def compute_error(F, D):
# 计算误差的函数
return np.linalg.norm(F - D, 'fro') / np.sqrt(F.shape[0])
def compute_complexity(D, q):
# 计算复杂度的函数
L = len(D)
return q * L
def main():
# 主函数
P = [0, 1, -1, 2, -2]
for N in [2, 4, 8, 16, 32]:
F = dft_matrix(N)
D, error = matrix_decomposition(F, P)
complexity = compute_complexity(D, q=3)
print(f'N = {N}: error = {error:.4f}, complexity = {complexity}')
if __name__ == '__main__':
main()
问题4
研究对Kronecker积矩阵的低复杂度逼近。当N1=4,N2=8时,具体思路如下:
1.根据定义,Kronecker积矩阵可以表示为:
F
N
=
F
4
⊗
F
8
F_N = F_4 ⊗ F_8
FN=F4⊗F8
2.分别对F_4和F_8进行适当的低秩矩阵分解:
F
4
≈
D
1
D
2
.
.
.
D
m
F
8
≈
E
1
E
2
.
.
.
E
n
F_4 ≈ D_1D_2...D_m\\ F_8 ≈ E_1E_2...E_n
F4≈D1D2...DmF8≈E1E2...En
3.然后根据Kronecker积的性质,有:
F
N
≈
(
D
1
D
2
.
.
.
D
m
)
⊗
(
E
1
E
2
.
.
.
E
n
)
=
(
D
1
⊗
E
1
)
(
D
2
⊗
E
2
)
.
.
.
(
D
m
⊗
E
n
)
F_N ≈ (D_1D_2...D_m) ⊗ (E_1E_2...E_n)\\ = (D_1⊗E_1)(D_2⊗E_2)...(D_m⊗E_n)
FN≈(D1D2...Dm)⊗(E1E2...En)=(D1⊗E1)(D2⊗E2)...(Dm⊗En)
4.矩阵D和E的分解要满足稀疏性约束和取值范围约束。
5.通过搜索找到使逼近误差最小的D和E的分解。
6.计算复杂度时考虑D、E中矩阵的数目及稀疏性。
设
F
N
F_N
FN为
N
=
N
1
N
2
N=N_1N_2
N=N1N2阶的Kronecker积矩阵:
F
N
=
F
N
1
⊗
F
N
2
F_N=F_{N_1}\otimes F_{N_2}
FN=FN1⊗FN2
其中
F
N
1
F_{N_1}
FN1和
F
N
2
F_{N_2}
FN2分别是
N
1
N_1
N1阶和
N
2
N_2
N2阶DFT矩阵。
对
F
N
1
F_{N_1}
FN1和
F
N
2
F_{N_2}
FN2分别进行低秩分解:
F
N
1
≈
D
1
D
2
⋯
D
M
F_{N_1}\approx D_1D_2\cdots D_M
FN1≈D1D2⋯DM
F
N
2
≈
E
1
E
2
⋯
E
L
F_{N_2}\approx E_1E_2\cdots E_L
FN2≈E1E2⋯EL
其中矩阵
D
i
,
E
j
D_i,E_j
Di,Ej满足约束条件:
1.每行最多2个非零元素(约束1)
2.非零元素取值范围为整数集P(约束2)
则根据Kronecker积的性质,有:
F
N
≈
(
D
1
D
2
⋯
D
M
)
⊗
(
E
1
E
2
⋯
E
L
)
F_N\approx(D_1D_2\cdots D_M)\otimes(E_1E_2\cdots E_L)
FN≈(D1D2⋯DM)⊗(E1E2⋯EL)
=
(
D
1
⊗
E
1
)
(
D
2
⊗
E
2
)
⋯
(
D
M
⊗
E
L
)
=(D_1\otimes E_1)(D_2\otimes E_2)\cdots(D_M\otimes E_L)
=(D1⊗E1)(D2⊗E2)⋯(DM⊗EL)
搜索找到使逼近误差最小的
D
i
,
E
j
D_i,E_j
Di,Ej的最优分解,然后计算相应的复杂度。
Kronecker积矩阵保留了被合成矩阵的结构特征,这为低秩逼近提供了可能。
将大维DFT矩阵分解为多个小维DFT矩阵的Kronecker积,可以分别对小矩阵进行逼近,降低了优化难度。
将逼近问题分解为多个小规模子问题,符合“分治”的一般思想。
Kronecker积运算保留了矩阵乘法,可以继续使用低秩矩阵分解逼近的思路。
分解出的小矩阵满足稀疏性约束,可以有效减少乘法复杂度。
小矩阵取值范围限制也降低了每个乘法的计算复杂度。
可以通过搜索找到最小逼近误差的小矩阵分解,保证一定的逼近精度。
矩阵分解数量和取值范围可根据精度需求调整,实现可配置化。
import numpy as np
from scipy.linalg import kron
def dft_matrix(n):
i, j = np.meshgrid(np.arange(n), np.arange(n))
omega = np.exp(-2 * np.pi * 1j / n)
W = np.power(omega, i*j)
return W / np.sqrt(n)
def kronecker_product(F1, F2):
return kron(F1, F2)
def low_rank_decompose(F, max_nonzero=2):
n = F.shape[0]
D = []
for i in range(n):
d = np.diag([F[i,i]] + [0]*(n-1))
D.append(d)
D_comb = list(combinations(D, max_nonzero))
# 选择误差最小的组合
F_approx = np.identity(n)
for d in D_comb[best_index]:
F_approx = F_approx @ d
error = np.linalg.norm(F - F_approx)
return D_comb[best_index], error
if __name__ == '__main__':
N1 = 4
N2 = 8
F1 = dft_matrix(N1)
F2 = dft_matrix(N2)
F = kronecker_product(F1, F2)
D1, E1 = low_rank_decompose(F1)
D2, E2 = low_rank_decompose(F2)
F_approx = kronecker_product(D1@D2, E1@E2)
error = np.linalg.norm(F - F_approx) / (N1*N2)
print(error)
问题五、
增加了精度限制要求,RMSE≤0.1。这个问题的主要难点是需要在满足精度约束的前提下,通过调整矩阵分解中元素的取值范围,来获得最小的硬件复杂度。针对这个问题,具体思路是:
1.使用问题3中矩阵分解的方法,将DFT矩阵F_N分解为多个对角矩阵的乘积。
2.对取值范围P进行递增搜索,比如依次取[0,±1]、[0,±1,±2]等,直到满足精度要求。
3.在每个取值范围下,搜索非零元素位置和取值,使RMSE最小。
4.记录下满足精度要求的最小取值范围。
5.在这个取值范围下,计算相应的硬件复杂度。
6.对不同大小的DFT矩阵N重复上述过程。
设DFT矩阵为
F
N
F_N
FN,将其分解为K个对角矩阵
D
k
D_k
Dk的乘积:
F
N
≈
D
1
D
2
⋯
D
K
F_N \approx D_1D_2\cdots D_K
FN≈D1D2⋯DK
其中每个
D
k
D_k
Dk满足:
1.每行最多2个非零元素(约束1)
2.非零元素取值范围为整数集
P
P
P(约束2)
要使逼近误差满足要求:
RMSE
=
∣
F
N
−
D
1
D
2
⋯
D
K
∣
F
N
≤
0.1
\text{RMSE} = \frac{|F_N - D_1D_2\cdots D_K|_F}{N} \leq 0.1
RMSE=N∣FN−D1D2⋯DK∣F≤0.1
进行以下迭代搜索:
1.初始化取值范围:
P
=
0
,
±
1
,
±
2
P={0, ±1, ±2}
P=0,±1,±2
2.在当前
P
P
P下,搜索
D
k
D_k
Dk的最优分解,使RMSE最小
3.如果RMSE
>
0.1
> 0.1
>0.1,扩大取值范围
P
P
P,增加整数集大小
4.重复2)3),直到RMSE
≤
0.1
\leq0.1
≤0.1
5.输出此时的
P
P
P和对应的复杂度
C
C
C
其中,复杂度计算如前。
通过调整取值范围,可以满足精度要求,并使复杂度尽可能小。
设置精度约束RMSE≤0.1是问题的实际需求,方法必须首先满足这一约束。
通过搜索逐步扩大取值范围,可以系统地满足精度需求。
取值范围最小时,对应复杂度也最小,所以可以找到复杂度最小的解。
矩阵分解方法满足稀疏性,可以减少乘法次数,降低复杂度。
取值范围小,可以减少单个乘法的计算量,也降低了复杂度。
搜索可以找到精度和复杂度的最优trade-off。
不同大小矩阵可统一适用该方法,具有普适性。
可以获得在给定精度需求下的最小复杂度方案。
矩阵分解个数、取值范围都可配置,实现灵活可控。
import numpy as np
# 生成DFT矩阵
# 低秩分解函数
def low_rank_decompose(F, P, err_threshold):
while True:
# 在当前P下搜索最优分解
D, err = search_optimal_decomp(F, P)
if err <= err_threshold:
break
else:
# 扩大取值范围
P = expand_value_range(P)
return D, err
# 计算复杂度函数
def compute_complexity(D, q):
L = len(D)
return q * L
# 主函数
if __name__ == '__main__':
F = dft_matrix(N)
P_init = [0,1,2]
D, err = low_rank_decompose(F, P_init, 0.1)
q = len(P)
comp = compute_complexity(D, q)
消融实验分析:
基准模型:使用完整的方法,即矩阵分解+取值范围控制+稀疏性约束。测量其逼近误差RMSE和复杂度C。
移除取值范围控制:仅使用矩阵分解+稀疏性约束,不限制取值范围。测量RMSE和C。
移除稀疏性约束:仅使用矩阵分解+取值范围控制,不要求稀疏性。测量RMSE和C。
仅矩阵分解:不使用取值范围控制和稀疏性约束。测量RMSE和C。
对比不同模型的RMSE和C。高RMSE表示逼近精度损失;高C表示复杂度增加。
矩阵分解是实现低复杂度逼近DFT的有效方法,但需要设计实现稀疏性。
约束矩阵中元素的取值范围,可以降低单个乘法的计算量。
在满足精度需求前提下,通过搜索可以找到使复杂度最小的分解方案。
对Kronecker积矩阵进行分解,可以将大型DFT分解为多个小矩阵,降低优化难度。
消融实验可以验证不同设计决策对逼近误差和复杂度的影响。
需要权衡误差精度与计算复杂度,根据实际需求确定可接受的trade-off。
该方法可以作为一种替代FFT的低复杂度DFT实现策略。
优化搜索和代码实现等细节亟待进一步改进。
想要获取更多完整版看看这里哈~
(5 封私信 / 2 条消息) 如何评价2023数学建模研赛B题? - csdn
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)