2.3 恰当微分方程
文章目录恰当微分方程判断恰当微分方程的充要条件求解恰当微分方程常见方法积分因子成为积分因子的充要条件求积分因子恰当微分方程M(x,y)dx+N(x,y)dy=du(x,y)M(x,y)dx+N(x,y)dy=du(x,y)M(x,y)dx+N(x,y)dy=du(x,y) =∂u∂xdx+∂u∂ydy=\frac{\partial u}{\partial x}dx+\frac{\partia...
恰当微分方程
- M ( x , y ) d x + N ( x , y ) d y = d u ( x , y ) M(x,y)dx+N(x,y)dy=du(x,y) M(x,y)dx+N(x,y)dy=du(x,y) = ∂ u ∂ x d x + ∂ u ∂ y d y =\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy =∂x∂udx+∂y∂udy
- M , N M,N M,N关于 x , y x,y x,y连续且可微(有连续一阶偏导)
判断恰当微分方程的充要条件
- ∂ M ∂ y = ∂ N ∂ x \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} ∂y∂M=∂x∂N
证充分:
- 思路:若
M
(
x
,
y
)
d
x
+
N
(
x
,
y
)
d
y
=
0
M(x,y)dx+N(x,y)dy=0
M(x,y)dx+N(x,y)dy=0满足以上条件,则能找到一个
u
(
x
,
y
)
u(x,y)
u(x,y)使
∂
u
∂
x
=
M
,
∂
u
∂
y
=
N
\frac{\partial u}{\partial x}=M,\frac{\partial u}{\partial y}=N
∂x∂u=M,∂y∂u=N成立
- 从 ∂ u ∂ x = M \frac{\partial u}{\partial x}=M ∂x∂u=M出发,得 u = ∫ M ( x , y ) d x + φ ( y ) u=\int M(x, y) \mathrm{d} x+\varphi(y) u=∫M(x,y)dx+φ(y)
- 再对y求偏导: ∂ u ∂ y = ∂ ∂ y ∫ M ( x , y ) d x + d φ ( y ) d y = N \frac{\partial u}{\partial y}=\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x+\frac{\mathrm{d} \varphi(y)}{\mathrm{d} y}=N ∂y∂u=∂y∂∫M(x,y)dx+dydφ(y)=N 得 d φ ( y ) d y = N − ∂ ∂ y ∫ M ( x , y ) d x \frac{\mathrm{d} \varphi(y)}{\mathrm{d} y}=N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x dydφ(y)=N−∂y∂∫M(x,y)dx所以只要证明右边的一堆和 x x x无关,就能说明真的存在一个 φ ( y ) \varphi(y) φ(y),那就真的存在一个满足条件的 u u u了!证明右边与x无关 ⇔ \Leftrightarrow ⇔证明右边一堆对 x x x求偏导=0 ∂ ∂ x [ N − ∂ ∂ y ∫ M ( x , y ) d x ] = ∂ N ∂ x − ∂ ∂ x [ ∂ ∂ y ∫ M ( x , y ) d x ] = ∂ N ∂ x − ∂ ∂ y [ ∂ ∂ x ∫ M ( x , y ) d x ] = ∂ N ∂ x − ∂ M ∂ y = 0 \begin{aligned} \frac{\partial}{\partial x}\left[N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\right] &=\frac{\partial N}{\partial x}-\frac{\partial}{\partial x}\left[\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\right] \\ &=\frac{\partial N}{\partial x}-\frac{\partial}{\partial y}\left[\frac{\partial}{\partial x} \int M(x, y) \mathrm{d} x\right] \\ &=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=0 \end{aligned} ∂x∂[N−∂y∂∫M(x,y)dx]=∂x∂N−∂x∂[∂y∂∫M(x,y)dx]=∂x∂N−∂y∂[∂x∂∫M(x,y)dx]=∂x∂N−∂y∂M=0
- 证毕,且 φ ( y ) = ∫ [ N − ∂ ∂ y ∫ M ( x , y ) d x ] d y \varphi(y)=\int\Big[N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\Big]dy φ(y)=∫[N−∂y∂∫M(x,y)dx]dy
- 因此求得 u = ∫ M ( x , y ) d x + ∫ [ N − ∂ ∂ y ∫ M ( x , y ) d x ] d y u=\int M(x,y)dx+\int\Big[N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\Big]dy u=∫M(x,y)dx+∫[N−∂y∂∫M(x,y)dx]dy恰当微分方程的通解为 u = c u=c u=c
- 或者 u = ∫ N ( x , y ) d y + ∫ [ M − ∂ ∂ x ∫ N ( x , y ) d y ] d x u=\int N(x,y)dy+\int\Big[M-\frac{\partial}{\partial x} \int N(x, y) \mathrm{d} y\Big]dx u=∫N(x,y)dy+∫[M−∂x∂∫N(x,y)dy]dx
求解恰当微分方程常见方法
常规方法
- ①先判断是否为恰微 ∂ M ∂ y ? = ∂ N ∂ x \frac{\partial M}{\partial y}?=\frac{\partial N}{\partial x} ∂y∂M?=∂x∂N
- ②若是,计算 ∫ M ( x , y ) d x \int M(x,y)dx ∫M(x,y)dx
- ③再算: ∫ [ N − ∂ ∂ y ∫ M ( x , y ) d x ] d y \int\Big[N-\frac{\partial}{\partial y} \int M(x, y) \mathrm{d} x\Big]dy ∫[N−∂y∂∫M(x,y)dx]dy
分项组合
- 把单独的
f
(
x
)
d
x
,
ψ
(
y
)
d
y
f(x)dx,\psi(y)dy
f(x)dx,ψ(y)dy单拎出来,剩下的
g
(
x
,
y
)
d
x
,
h
(
x
,
y
)
d
y
g(x,y)dx,h(x,y)dy
g(x,y)dx,h(x,y)dy放在一起看是否为某些特定函数的全微分,一般有
- y d x + x d y = d ( x y ) y \mathrm{d} x+x \mathrm{d} y=\mathrm{d}(x y) ydx+xdy=d(xy)
- y d x − x d y y 2 = d ( x y ) \frac{y \mathrm{d} x-x \mathrm{d} y}{y^{2}}=\mathrm{d}\left(\frac{x}{y}\right) y2ydx−xdy=d(yx)
- − y d x + x d y x 2 = d ( y x ) \frac{-y \mathrm{d} x+x \mathrm{d} y}{x^{2}}=\mathrm{d}\left(\frac{y}{x}\right) x2−ydx+xdy=d(xy)
- y d x − x d y x y = d ( ln ∣ x y ∣ ) \frac{y \mathrm{d} x-x \mathrm{d} y}{x y}=\mathrm{d}\left(\ln \left|\frac{x}{y}\right|\right) xyydx−xdy=d(ln∣∣∣∣yx∣∣∣∣)
- y d x − x d y x 2 + y 2 = d ( arctan x y ) \frac{y d x-x d y}{x^{2}+y^{2}}=d\left(\arctan \frac{x}{y}\right) x2+y2ydx−xdy=d(arctanyx)
- y d x − x d y x 2 − y 2 = 1 2 d ( ln ∣ x − y x + y ∣ ) \frac{y d x-x d y}{x^{2}-y^{2}}=\frac{1}{2} d\left(\ln \left|\frac{x-y}{x+y}\right|\right) x2−y2ydx−xdy=21d(ln∣∣∣∣x+yx−y∣∣∣∣)
积分因子
- 积分因子的目的:将非恰微方程转化为恰微
- 存在连续可微的 μ = μ ( x , y ) ≠ 0 \mu=\mu(x,y)\ne0 μ=μ(x,y)=0使得 μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = 0 \mu(x,y)M(x,y)dx+\mu(x,y)N(x,y)dy=0 μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0变成恰微,此时称 μ ( x , y ) \mu(x,y) μ(x,y)为方程 M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)dx+N(x,y)dy=0 M(x,y)dx+N(x,y)dy=0的积分因子
- 即存在函数 v v v,使得 μ M d x + μ N d y ≡ d v = 0 \mu Mdx+\mu Ndy\equiv dv=0 μMdx+μNdy≡dv=0此时 v ( x , y ) = c v(x,y)=c v(x,y)=c是原方程的通解
- 注意:①不同方程有不同积分因子,因此最后的通解形式会不一样;②只要方程有解,必有积分因子
成为积分因子的充要条件
- ∂ ( μ M ) ∂ y = ∂ ( μ N ) ∂ x \frac{\partial (\mu M)}{\partial y}=\frac{\partial (\mu N)}{\partial x} ∂y∂(μM)=∂x∂(μN)即 N ∂ μ ∂ x − M ∂ μ ∂ y = ( ∂ M ∂ y − ∂ N ∂ x ) μ N \frac{\partial \mu}{\partial x}-M \frac{\partial \mu}{\partial y}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \mu N∂x∂μ−M∂y∂μ=(∂y∂M−∂x∂N)μ
求积分因子
通常先看是否存在只与
x
或
y
x或y
x或y有关的积分因子
结论:
- 方程有只与 x x x有关的积分因子的充要: ∂ M ∂ y − ∂ N ∂ x N = ψ ( x ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\psi(x) N∂y∂M−∂x∂N=ψ(x)
- 只与 y y y有关的充要: ∂ M ∂ y − ∂ N ∂ x − M = φ ( y ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{-M}=\varphi(y) −M∂y∂M−∂x∂N=φ(y)
证明:
这不就直接让
∂
μ
∂
x
\frac{\partial \mu}{\partial x}
∂x∂μ或
∂
μ
∂
y
=
0
\frac{\partial \mu}{\partial y}=0
∂y∂μ=0就得了
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)