R 数据可视化 01 | 聚类热图
文章目录示例数据运行环境绘制聚类热图常规聚类热图绘制无分类信息热图无聚类热图分割聚类树热图多分组聚类热图分组调色显示文本去除描边字体相关调整聚类树高聚类方法选择保存为图片详细参数设置说明设置工作目录载入数据获取数据子集样本分类数据示例数据下载:链接:https://pan.baidu.com/s/1_b8swSkWDqIHZi6UwKaspA提取码:pll7文件说明示例数据,其中数据...
文章目录
示例数据
链接:https://pan.baidu.com/s/13l8UtKvvDxFWL8ikzq7vJw
提取码:ttb4
文件说明
示例数据,其中数据均为虚拟数据,与实际生物学过程无关
文件名:dataset_heatmap.txt
列分别为基因,cell1的5个重复样本,cell2的5个重复样本
行代表每个基因在所有样本的FPKM值
运行环境
Rstudio:
如果系统中没有 Rstudio,先下载安装:https://www.rstudio.com/products/rstudio/download/#download
heatmaps 包:
如果没有安装该R包,执行以下代码:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("heatmaps")
绘制聚类热图
常规聚类热图绘制
# 执行前设置====================================
# 清空暂存数据
rm(list=ls())
# 载入R包
library(pheatmap)
# 设置工作目录
setwd("E:/R/WorkSpace/baimoc/visualization")
# 整理数据集====================================
# 载入数据
dataset <- read.table('resource/dataset_heatmap.txt',header = TRUE, row.names = 1)
# 截取表达矩阵的一部分数据来绘制热图
exp_ds = dataset[c(1:60),c(1:10)]
# 构建样本分类数据
cell_list=c(rep('cell_1',5),
rep('cell_2',5))
annotation_c <- data.frame(cell_list)
rownames(annotation_c) <- colnames(exp_ds)
# 绘制热图=====================================
pheatmap(exp_ds, #表达数据
cluster_rows = T,#行聚类
cluster_cols = T,#列聚类
annotation_col =annotation_c, #样本分类数据
annotation_legend=TRUE, # 显示样本分类
show_rownames = T,# 显示行名
show_colnames = T,# 显示列名
scale = "row", #对行标准化
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100) # 热图基准颜色
)
无分类信息热图
# 将绘制热图部分替换为下列代码
# 绘制热图=====================================
pheatmap(exp_ds,
show_rownames = T,
show_colnames = T,
scale = "row",
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100)
)
无聚类热图
# 将绘制热图部分替换为下列代码
pheatmap(exp_ds, #表达数据
cluster_rows = F,
cluster_cols = F,
show_rownames = T,
show_colnames = T,
scale = "row",
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100)
)
分割聚类树热图
# 绘制热图=====================================
pheatmap(exp_ds,
show_rownames = T,
show_colnames = T,
scale = "row",
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
cutree_cols = 2,
cutree_rows = 20
)
多分组聚类热图
# 清空暂存数据
rm(list=ls())
# 载入R包
library(pheatmap)
# 设置工作目录
setwd("E:/R/WorkSpace/baimoc/visualization")
# 整理数据集====================================
# 参数'./resource/dataset.txt',表示载入E:/R/WorkSpace/baimoc/visualization/resource/dataset_heatmap.txt
dataset <- read.table('resource/dataset_heatmap.txt',header = TRUE, row.names = 1)
# 截取表达矩阵的一部分数据来绘制热图
exp_ds = dataset[c(1:60),c(1:10)]
# 构建样本分类数据
cell_type=c(rep('cell_1',5),
rep('cell_2',5))
sample_calss=c(rep('normal',5),
rep('cancer',5))
sample_type=c(rep('control',5),
rep('case',5))
level = c(1:10)
annotation_c <- data.frame(cell_type, sample_calss, sample_type, level)
rownames(annotation_c) <- colnames(exp_ds)
gene_class=c(rep('good',30),
rep('bad',30))
gene_type=c(rep('fat',20),
rep('blood',20),
rep('Immunology',20))
annotation_r <- data.frame(gene_class, gene_type)
rownames(annotation_r) <- rownames(exp_ds)
# 绘制热图=====================================
pheatmap(exp_ds, #表达数据
cluster_rows = T,#行聚类
cluster_cols = T,#列聚类
annotation_col =annotation_c, #样本分类数据
annotation_row = annotation_r,
annotation_legend=TRUE, # 显示样本分类
show_rownames = T,# 显示行名
show_colnames = T,# 显示列名
scale = "row", #对行标准化
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100), # 热图基准颜色
)
分组调色
# 清空暂存数据
rm(list=ls())
# 载入R包
library(pheatmap)
# 设置工作目录
setwd("E:/R/WorkSpace/baimoc/visualization")
# 整理数据集====================================
# 参数'./resource/dataset.txt',表示载入E:/R/WorkSpace/baimoc/visualization/resource/dataset_heatmap.txt
dataset <- read.table('resource/dataset_heatmap.txt',header = TRUE, row.names = 1)
# 截取表达矩阵的一部分数据来绘制热图
exp_ds = dataset[c(1:60),c(1:10)]
# 构建样本分类数据
sample_calss=c(rep('Normal',5),
rep('Cancer',5))
annotation_c <- data.frame(sample_calss)
rownames(annotation_c) <- colnames(exp_ds)
gene_type=c(rep('Fat',20),
rep('Blood',20),
rep('Immunology',20))
annotation_r <- data.frame(gene_type)
rownames(annotation_r) <- rownames(exp_ds)
annotation_colors = list(sample_calss=c(Normal='#F8EFBA', Cancer='#FD7272'),
gene_type=c(Fat='#f1f2f6', Blood='#ced6e0', Immunology='#57606f'))
# 绘制热图=====================================
pheatmap(exp_ds, #表达数据
cluster_rows = T,#行聚类
cluster_cols = T,#列聚类
annotation_col =annotation_c, #样本分类数据
annotation_row = annotation_r,
annotation_colors = annotation_colors,
annotation_legend=TRUE, # 显示样本分类
show_rownames = T,# 显示行名
show_colnames = T,# 显示列名
scale = "row", #对行标准化
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100), # 热图基准颜色
)
显示文本
# 绘制热图=====================================
pheatmap(exp_ds,
show_rownames = T,
show_colnames = T,
scale = "row",
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
display_numbers = T, # 显示数值
fontsize_number = 8, # 设置字体大小
number_color = '#4a4a4a', #设置颜色
number_format = '%.2f' # 设置显示格式
)
去除描边
pheatmap(exp_ds, #表达数据
show_rownames = T,# 显示行名
show_colnames = T,# 显示列名
scale = "row", #对行标准化
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100), # 热图基准颜色
border_color = 'NA',
)
字体相关
pheatmap(exp_ds, #表达数据
show_rownames = T,# 显示行名
show_colnames = T,# 显示列名
scale = "row", #对行标准化
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100), # 热图基准颜色
fontsize = 10, # 全局字体大小,会被后边设置所覆盖
fontsize_row = 8, # 行字体大小
fontsize_col = 12, # 列字体大小
angle_col = 45, # 设置列偏转角度,可选 270, 0, 45, 90, 315,
gaps_row = T
)
调整聚类树高
pheatmap(exp_ds,
show_rownames = T,
show_colnames = T,
scale = "row",
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
treeheight_row = 50,
treeheight_col = 30
)
聚类方法选择
pheatmap(exp_ds,
show_rownames = T,
show_colnames = T,
scale = "row",
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
clustering_distance_rows = 'euclidean', # 计算聚类间距的算法,可选'correlation', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'
clustering_method = 'complete', # 聚类方法, 可选'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'
)
保存为图片
-
这里可导出像素图和PDF,也可拷贝到PS调整
-
选择合适的文件格式,调整合适长宽,印刷或投稿选PDF,TIFF,EPS就好
-
文件默认存储在刚刚设置的工作目录里
详细参数设置说明
设置工作目录
setwd("E:/R/WorkSpace/baimoc/visualization")
在R的执行过程中,为了方便,需要指定一个获取文件和输出文件所在的目录,这样就不需要每次设置全路径,只需要指定相对目录
setwd("E:/R/WorkSpace/baimoc/visualization")
的意思就是设置工作目录为E:/R/WorkSpace/baimoc/visualization
载入数据
dataset <- read.table('resource/dataset_heatmap.txt',header = TRUE, row.names = 1)
因为工作目录已经设置,如果要获取E:/R/WorkSpace/baimoc/visualization/resource/dataset_heatmap.txt
文件,那么就只需要设置相对路径resource/dataset_heatmap.txt
对于header = TRUE, row.names = 1
代表读取文件表头,设置第一列为行名
获取数据子集
# 截取表达矩阵的一部分数据来绘制热图
exp_ds = dataset[c(1:60),c(1:10)]
原始数据:
如果获取前5个基因和cell1与cell2的前3个样本,只需要执行
exp_ds = dataset[c(1:5),c(1:3,6:8)]
样本分类数据
# 构建样本分类数据
cell_list=c(rep('cell_1',5),
rep('cell_2',5))
annotation_c <- data.frame(cell_list)
rownames(annotation_c) <- colnames(exp_ds)
这段代码目的是构建分类名与原始数据的列名的对应关系
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)