不足20行 python 代码,高效实现 k-means 均值聚类算法
关于 k-means 均值聚类算法的原理介绍、实现代码,网上有很多,但运行效率似乎都有点问题。今天稍微有点空闲,写了一个不足20行的 k-means 均值聚类算法,1万个样本平均耗时20毫秒(10次均值)。同样的数据样本,网上流行的算法平均耗时3000毫秒(10次均值)。差距竟然达百倍以上,令我深感意外,不由得再次向 numpy 献上膝盖!
scikti-learn 将机器学习分为4个领域,分别是分类(classification)、聚类(clustering)、回归(regression)和降维(dimensionality reduction)。k-means均值算法虽然是聚类算法中比较简单的一种,却包含了丰富的思想内容,非常适合作为初学者的入门习题。
关于 k-means 均值聚类算法的原理介绍、实现代码,网上有很多,但运行效率似乎都有点问题。今天稍微有点空闲,写了一个不足20行的 k-means 均值聚类算法,1万个样本平均耗时20毫秒(10次均值)。同样的数据样本,网上流行的算法平均耗时3000毫秒(10次均值)。差距竟然达百倍以上,令我深感意外,不由得再次向 numpy 献上膝盖!
以下是我的代码,包含注释、空行总共25行,有效代码15行。
import numpy as np
def kmeans_xufive(ds, k):
"""k-means聚类算法
k - 指定分簇数量
ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值
"""
m, n = ds.shape # m:样本数量,n:每个样本的属性值个数
result = np.empty(m, dtype=np.int) # m个样本的聚类结果
cores = ds[np.random.choice(np.arange(m), k, replace=False)] # 从m个数据样本中不重复地随机选择k个样本作为质心
while True: # 迭代计算
d = np.square(np.repeat(ds, k, axis=0).reshape(m, k, n) - cores)
distance = np.sqrt(np.sum(d, axis=2)) # ndarray(m, k),每个样本距离k个质心的距离,共有m行
index_min = np.argmin(distance, axis=1) # 每个样本距离最近的质心索引序号
if (index_min == result).all(): # 如果样本聚类没有改变
return result, cores # 则返回聚类结果和质心数据
result[:] = index_min # 重新分类
for i in range(k): # 遍历质心集
items = ds[result==i] # 找出对应当前质心的子样本集
cores[i] = np.mean(items, axis=0) # 以子样本集的均值作为当前质心的位置
这是网上比较流行的 k-means 均值聚类算法代码,包含注释、空行总共57行,有效代码37行。
import numpy as np
# 加载数据
def loadDataSet(fileName):
data = np.loadtxt(fileName,delimiter='\t')
return data
# 欧氏距离计算
def distEclud(x,y):
return np.sqrt(np.sum((x-y)**2)) # 计算欧氏距离
# 为给定数据集构建一个包含K个随机质心的集合
def randCent(dataSet,k):
m,n = dataSet.shape
centroids = np.zeros((k,n))
for i in range(k):
index = int(np.random.uniform(0,m)) #
centroids[i,:] = dataSet[index,:]
return centroids
# k均值聚类
def kmeans_open(dataSet,k):
m = np.shape(dataSet)[0] #行的数目
# 第一列存样本属于哪一簇
# 第二列存样本的到簇的中心点的误差
clusterAssment = np.mat(np.zeros((m,2)))
clusterChange = True
# 第1步 初始化centroids
centroids = randCent(dataSet,k)
while clusterChange:
clusterChange = False
# 遍历所有的样本(行数)
for i in range(m):
minDist = 100000.0
minIndex = -1
# 遍历所有的质心
#第2步 找出最近的质心
for j in range(k):
# 计算该样本到质心的欧式距离
distance = distEclud(centroids[j,:],dataSet[i,:])
if distance < minDist:
minDist = distance
minIndex = j
# 第 3 步:更新每一行样本所属的簇
if clusterAssment[i,0] != minIndex:
clusterChange = True
clusterAssment[i,:] = minIndex,minDist**2
#第 4 步:更新质心
for j in range(k):
pointsInCluster = dataSet[np.nonzero(clusterAssment[:,0].A == j)[0]] # 获取簇类所有的点
centroids[j,:] = np.mean(pointsInCluster,axis=0) # 对矩阵的行求均值
return clusterAssment.A[:,0], centroids
函数create_data_set(),用于生成测试数据。可变参数 cores 是多个三元组,每一个三元组分别是质心的x坐标、y坐标和对应该质心的数据点的数量。
def create_data_set(*cores):
"""生成k-means聚类测试用数据集"""
ds = list()
for x0, y0, z0 in cores:
x = np.random.normal(x0, 0.1+np.random.random()/3, z0)
y = np.random.normal(y0, 0.1+np.random.random()/3, z0)
ds.append(np.stack((x,y), axis=1))
return np.vstack(ds)
测试代码如下:
import time
import matplotlib.pyplot as plt
k = 4
ds = create_data_set((0,0,2500), (0,2,2500), (2,0,2500), (2,2,2500))
t0 = time.time()
result, cores = kmeans_xufive(ds, k)
t = time.time() - t0
plt.scatter(ds[:,0], ds[:,1], s=1, c=result.astype(np.int))
plt.scatter(cores[:,0], cores[:,1], marker='x', c=np.arange(k))
plt.show()
print(u'使用kmeans_xufive算法,1万个样本点,耗时%f0.3秒'%t)
t0 = time.time()
result, cores = kmeans_open(ds, k)
t = time.time() - t0
plt.scatter(ds[:,0], ds[:,1], s=1, c=result.astype(np.int))
plt.scatter(cores[:,0], cores[:,1], marker='x', c=np.arange(k))
plt.show()
print(u'使用kmeans_open算法,1万个样本点,耗时%f0.3秒'%t)
测试结果如下:
PS D:\XufiveGit\CSDN\code> py -3 .\k-means.py
使用kmeans_xufive算法,1万个样本点,耗时0.0156550.3秒
使用kmeans_open算法,1万个样本点,耗时3.9990890.3秒
效果如下:
后记
近期有很多朋友通过私信咨询有关python学习问题。为便于交流,我在CSDN的app上创建了一个小组,名为“python作业辅导小组”,面向python初学者,为大家提供咨询服务、辅导python作业。欢迎有兴趣的同学扫码加入。
CSDN 不止为我们提供了这样一个交流平台,还经常推出各类技术交流活动。近期我将在 GeekTalk 栏目,和 Python 新手共同探讨如何快速成长为基础扎实、功力强大的程序员。CSDN 还为这个活动提供了一些纪念品。如果有兴趣,请扫码加入,或者直接点此进入。
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)