点击上方“机器学习与生成对抗网络”,关注星标

获取有趣、好玩的前沿干货!

金磊 丰色 发自 凹非寺 量子位 报道 | 公众号 QbitAI

排队1241人,等待2600秒……”

——这届网友为了看一眼自己在动漫里的样子,可真是拼了!

16b5aa24d6dd9e0382bcd8917c092035.png

“始作俑者”是一款可以把人像变动漫的生成器

80f890e19bf542b3bc264a7e59c9958b.gif

只需一张图片或一段视频,无论男女老少、明星素人都可以一睹自己的“动漫风采”~

什么“国民老婆”王冰冰

e62933cfa5f817238b21de61a6aec06e.png

什么“国民妹妹”IU

3e6caab8f0ea07aaf89108cfaf93161b.png

什么科技圈大佬、EDG成员、金发美女、容嬷嬷……

499020fc0c633408ecd2fecc08837225.png

发丝、眉宇,甚至眼神里流露出来的情绪,都给你“描绘”得淋漓尽致……

c0885fb8d519b696d1247a218ab465b2.gif

52a352c7da50ddc523f03714d10cacb8.gif

 视频效果

这也难怪网友把服务器都给挤爆了08aec2489ccf8a093b532d9192b39909.png

随便翻翻大家的作品,简直是深不见底。

87d52bcb316de439d274d24b881db9e6.gif

再看看GitHub上的相关项目,果然也冲上了趋势榜第一名

537aee425e42c36b05a02862c481ab99.png

这个AnimeGAN,真是厉害了!

如何给自己捏一个动漫脸?

看完展示的效果,你是不是也想打造一个自己专属的漫画脸了呢?

这个可以有,现在就手把手教你。

第一种方法就very very简单了,只需要上传一张照片就可以。

提供在线玩法的网站(链接见文末),就是那个著名的抱抱脸 (Hugging Face)。

56c1902edf3b363cf344863f940274d6.png

它专门开设了一个在线AnimeGANv2的App,直接把图片“丢”进去就好。

ac328ce0365169c1f1ce1deb7f350c29.png

BUT!!!

也正如刚才提到的,现在这个AI着实有点太火了,简单的在线方法,就等同于排大队

706c501d7f368f8a4e5624b6cde939b5.png

这不,等了5259秒之后,前面还有15人……

如果不想排队怎么办?

接下来,就是第二种方法了——上代码

4221a91e263492a65e687fab56ba9075.png

热心网友在苦等了3小时之后,终于还是忍不住了,强烈安利Colab版本(链接见文末):

a5d677e406481302dcd55adc0f14d912.png

先运行一下文档里的前两段代码,然后只需要简单修改照片路径即可。

当然,如果想加大难度挑战一下,AnimeGANv2的GitHub项目也是有的哈:

abb6554ff628349fede5ba141f84b973.png

以上介绍的方法都是用图片转换,如果你想用视频的话,在AnimeGANv2项目中执行下面这两条命令就OK:

7e58291f03ab62b2122db982167999a0.png

当然,该项目的Pytorch实现也有,不过Pytorch版本目前只支持图片转换;如果想转视频,暂时就需要你自己写个脚本了~

0a96f6bb23b776fa2df764defb44f30d.png

风格迁移+GAN

那么,如此效果的背后,到底是用了什么原理呢?

AnimeGAN是来自武汉大学和湖北工业大学的一项研究,采用的是神经风格迁移 + 生成对抗网络(GAN)的组合。

c194f23da5c999bdbe6e8b6506da9630.png

它其实是基于CartoonGAN的改进,并提出了一个更加轻量级的生成器架构。

a4c320e90345e535fa071c8cfdfeb516.png

AnimeGAN的生成器可以视作一个对称的编码器-解码器网络,由标准卷积、深度可分离卷积、反向残差块、上采样和下采样模块组成。

为了有效减少生成器的参数数量,AnimeGAN的网络中使用了8个连续且相同的IRB(inverted residual blocks)。

在生成器中,具有1×1卷积核的最后一个卷积层不使用归一化层,跟随其后的是tanh非线性激活函数。

1e9f44fa574d808f8f5cd21a81470f06.png

上图中,K为内核大小,C为特征图数量,S为每个卷积层的跨度,H是特征图的高度,W是特征图的宽度,Resize值用于设置特征图大小的插值方法,⊕表示逐元素加法。

而此次的V2版本,是基于第一代AnimeGAN的升级,主要解决了模型生成的图像中存在高频伪影的问题。

具体而言,所采取的措施是使用特征的层归一化(layer normalization),来防止网络在生成的图像中产生高频伪影。

作者认为,层归一化可以使feature map中的不同通道,具有相同的特征属性分布,可以有效地防止局部噪声的产生。

17f374b8dfb650125dba4879c42b46a0.png

AnimeGANv2的生成器参数大小为8.6MB,而AnimeGAN的生成器参数大小为15.8MB。

它俩使用的鉴别器大致相同,区别在于AnimeGANv2使用的是层归一化,而不是实例归一化(instance normalization)。

网友:我变漂亮了

这个AI可算是圈了一众粉丝。

有些网友“冲进二次元”之后,发现了自己惊人的美貌:

它把我变漂亮了!

b61def5bd86940b7186cea55b48e1c90.png

而且非常骄傲的晒出了自己的漫画脸。

还有网友看完比尔盖茨的效果之后,直呼:

天!盖茨看起来聪明又性感。

2921ef8cee64e37a2b83c63aa1e345a0.png

1e9be060bc849e652667c1252c98d29a.png

作者:生成效果更好的AnimeGANv3也快来了

AnimeGAN的原作者一共有3位,分别是湖北工业大学的刘罡副教授,陈颉博士,以及他们的学生Xin Chen。

这个项目的诞生主要出于团队成员的个人兴趣,也就是对二次元宅文化和对艺术的热爱

作者之一陈同学介绍,AnimeGAN和AnimeGANv2分别耗时2-3个月完成,其中遇到了不少困难。

其中就包括硬件资源的极度匮乏,比如当时做AnimeGAN用到的英伟达单卡服务器还是由该校艺术设计学院的院长饶鉴教授提供,而他负责的研究也曾依赖于向其他同学借机器跑实验。

到了AnimeGANv2时,就只剩一台单卡2080ti服务器供使用了。

不过,所有努力都没有白费,如今AnimeGAN已受到非常多人的关注和喜欢,这让陈同学和他的导师团队都非常有成就感。

要知道,就连新海诚导演都曾转发过AnimeGAN的作品呢。

551d94a9005af147a8fb3d750ec11c6f.png

但,这项以兴趣爱好为驱动的科研项目并不只是“图个好玩”。

在我们与该团队的交流当中,他们表示:

主要目标还是以学术论文为里程牌,以项目能工程化落地到实际应用中为最大期待。

而接下来,AnimeGANv3也快来了

它到时会采用更小的网络规模,大概缩减到只有4M左右;同时解决AnimeGANv2的一些不足(比如v2保留了原图过多的细节),让生成的动漫效果质量更高。

这也意味着AnimeGANv3将具备商业化的能力。

而在AnimeGANv3完成之后,他们还会对人脸到动漫的算法进行不断地优化。

One More Thing

最后,大家上手之前一定要注意,虽然AnimeGAN展示的效果都是比较好的,但这有一个大前提:

照片一定要高清、五官尽量要清晰

不然画风可能就会变得诡异(作者亲测,欲哭无泪)……

那么,你在漫画里是什么样子?

快去试试吧~

在线Demo:

https://huggingface.co/spaces/akhaliq/AnimeGANv2

Colab版本:

https://colab.research.google.com/drive/1jCqcKekdtKzW7cxiw_bjbbfLsPh-dEds?usp=sharing#scrollTo=niSP_i7FVC3c

GitHub地址:

https://github.com/TachibanaYoshino/AnimeGANv2

https://github.com/bryandlee/animegan2-pytorch

参考链接:

[1]https://www.reddit.com/r/MachineLearning/comments/qo4kp8/r_p_animeganv2_face_portrait_v2/
[2]https://user-images.githubusercontent.com/26464535/137619176-59620b59-4e20-4d98-9559-a424f86b7f24.jpg
[3]https://twitter.com/chriswolfvision/status/1457489986933170179

猜您喜欢:

等你着陆!【GAN生成对抗网络】知识星球!

CVPR 2021专题1:GAN的改进

CVPR 2021 | GAN的说话人驱动、3D人脸论文汇总

CVPR 2021 | 图像转换 今如何?几篇GAN论文

【CVPR 2021】通过GAN提升人脸识别的遗留难题

CVPR 2021生成对抗网络GAN部分论文汇总

经典GAN不得不读:StyleGAN

最新最全20篇!基于 StyleGAN 改进或应用相关论文

超100篇!CVPR 2020最全GAN论文梳理汇总!

附下载 | 《Python进阶》中文版

附下载 | 经典《Think Python》中文版

附下载 | 《Pytorch模型训练实用教程》

附下载 | 最新2020李沐《动手学深度学习》

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 | 超100篇!CVPR 2020最全GAN论文梳理汇总!

附下载 |《计算机视觉中的数学方法》分享

f3dd9cd4ed804d4b1d3aabb27a69c7dd.png

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐