(十 九)基矢量的导数、Christoffel符号
本文的主要内容如下:1. 协变基矢对曲线坐标的导数与Christoffel符号2. Christoffel符号的计算与性质2.1. Christoffel符号的计算2.2. Christoffel符号的对称性与指标升降关系2.3. 度量张量的协变分量与第一类Christoffel符号的关系2.4. 第二类Christoffel符号与协变基矢的混合积\sqrt{g}g的关系2.5. Christo
本文的主要内容如下:
1. 协变基矢对曲线坐标的导数与Christoffel符号
由于
∂
g
⃗
i
∂
x
j
(
i
,
j
=
1
,
2
,
3
)
\dfrac{\partial \vec{g}_i}{\partial x^j}\ (i,j=1,2,3)
∂xj∂gi (i,j=1,2,3) 为一阶张量,也可在协变基或逆变基上就地展开,即:
∂
g
⃗
i
∂
x
j
=
Γ
i
j
k
g
⃗
k
=
Γ
i
j
,
k
g
⃗
k
(
a
)
\dfrac{\partial \vec{g}_i}{\partial x^j}=\Gamma^k_{ij}\vec{g}_k=\Gamma_{ij,k}\vec{g}^k\qquad(a)
∂xj∂gi=Γijkgk=Γij,kgk(a)
其中,组合系数
Γ
i
j
k
、
Γ
i
j
,
k
\Gamma^k_{ij}、\Gamma_{ij,k}
Γijk、Γij,k 分别称作第二类Christoffel符号与第一类Christoffel符号。
2. Christoffel符号的计算与性质
2.1. Christoffel符号的计算
由
(
a
)
(a)
(a)知 Christoffel符号的计算表达式为:
{
Γ
i
j
k
=
∂
g
⃗
i
∂
x
j
⋅
g
⃗
k
=
∂
2
x
ˉ
p
∂
x
i
∂
x
j
∂
x
k
∂
x
ˉ
p
Γ
i
j
,
k
=
∂
g
⃗
i
∂
x
j
⋅
g
⃗
k
=
∂
2
x
ˉ
p
∂
x
i
∂
x
j
∂
x
ˉ
p
∂
x
k
(
b
)
\begin{cases} \Gamma^k_{ij}=\dfrac{\partial \vec{g}_i}{\partial x^j}\cdot\vec{g}^k=\dfrac{\partial^2\bar{x}_p}{\partial x^i\partial x^j} \dfrac{\partial x^k}{\partial\bar{x}_p} \\\\ \Gamma_{ij,k}=\dfrac{\partial \vec{g}_i}{\partial x^j}\cdot\vec{g}_k=\dfrac{\partial^2\bar{x}_p}{\partial x^i\partial x^j} \dfrac{\partial\bar{x}_p}{\partial x^k} \end{cases}\qquad(b)
⎩
⎨
⎧Γijk=∂xj∂gi⋅gk=∂xi∂xj∂2xˉp∂xˉp∂xkΓij,k=∂xj∂gi⋅gk=∂xi∂xj∂2xˉp∂xk∂xˉp(b)
其中,
x
ˉ
1
(
x
1
,
x
2
,
x
3
)
、
x
ˉ
2
(
x
1
,
x
2
,
x
3
)
、
x
ˉ
3
(
x
1
,
x
2
,
x
3
)
\bar{x}_1(x^1,x^2,x^3)、\bar{x}_2(x^1,x^2,x^3)、\bar{x}_3(x^1,x^2,x^3)
xˉ1(x1,x2,x3)、xˉ2(x1,x2,x3)、xˉ3(x1,x2,x3) 为仿射坐标。
2.2. Christoffel符号的对称性与指标升降关系
根据Christoffel符号的计算表达式,假设混合偏导与求导次序无关,则
Γ
i
j
k
、
Γ
i
j
,
k
\Gamma^k_{ij}、\Gamma_{ij,k}
Γijk、Γij,k关于指标
i
,
j
i,j
i,j 均具有对称性。 根据
(
a
)
(a)
(a) 式有:
∂
g
⃗
i
∂
x
j
=
Γ
i
j
k
g
⃗
k
=
Γ
i
j
k
g
k
l
g
⃗
l
=
Γ
i
j
,
l
g
⃗
l
⟹
(
Γ
i
j
k
g
k
l
−
Γ
i
j
,
l
)
g
⃗
l
=
0
⃗
⟹
Γ
i
j
,
l
=
Γ
i
j
k
g
k
l
⟹
Γ
i
j
,
l
g
l
m
=
Γ
i
j
k
g
k
l
g
l
m
=
Γ
i
j
k
δ
k
m
=
Γ
i
j
m
\begin{aligned} &\qquad\dfrac{\partial \vec{g}_i}{\partial x^j}=\Gamma^k_{ij}\vec{g}_k=\Gamma^k_{ij}g_{kl}\vec{g}^l=\Gamma_{ij,l}\vec{g}^l\\\ \\ &\Longrightarrow(\Gamma^k_{ij}g_{kl}-\Gamma_{ij,l})\vec{g}^l=\vec{0}\\\ \\ &\Longrightarrow \Gamma_{ij,l}=\Gamma^k_{ij}g_{kl} \\\ \\ &\Longrightarrow \Gamma_{ij,l}g^{lm}=\Gamma^k_{ij}g_{kl}g^{lm}=\Gamma^k_{ij}\delta^m_k=\Gamma^m_{ij} \end{aligned}
∂xj∂gi=Γijkgk=Γijkgklgl=Γij,lgl⟹(Γijkgkl−Γij,l)gl=0⟹Γij,l=Γijkgkl⟹Γij,lglm=Γijkgklglm=Γijkδkm=Γijm
即,Christoffel符号关于第三指标
k
k
k 可以通过度量张量的协变/逆变分量实现指标升降:
{
Γ
i
j
,
l
=
Γ
i
j
k
g
k
l
Γ
i
j
l
=
Γ
i
j
,
k
g
k
l
(
c
)
\begin{cases} \Gamma_{ij,l}=\Gamma^k_{ij}\ g_{kl} \\\\ \Gamma^l_{ij}=\Gamma_{ij,k}\ g^{kl} \end{cases}\qquad(c)
⎩
⎨
⎧Γij,l=Γijk gklΓijl=Γij,k gkl(c)
2.3. 度量张量的协变分量与第一类Christoffel符号的关系
∂
g
i
j
∂
x
k
=
∂
∂
x
k
(
g
⃗
i
⋅
g
⃗
j
)
=
∂
g
⃗
i
∂
x
k
⋅
g
⃗
j
+
g
⃗
i
⋅
∂
g
⃗
j
∂
x
k
=
Γ
i
k
,
m
g
⃗
m
⋅
g
⃗
j
+
g
⃗
i
⋅
Γ
j
k
,
m
g
⃗
m
=
Γ
i
k
,
j
+
Γ
j
k
,
i
(
d
)
\begin{aligned} &\dfrac{\partial g_{ij}}{\partial x^k}=\dfrac{\partial}{\partial x^k}(\vec{g}_i\cdot\vec{g}_j)=\dfrac{\partial\vec{g}_i}{\partial x^k}\cdot\vec{g}_j+\vec{g}_i\cdot\dfrac{\partial\vec{g}_j}{\partial x^k}\\\\ &\qquad=\Gamma_{ik,m}\vec{g}^m\cdot\vec{g}_j+\vec{g}_i\cdot\Gamma_{jk,m}\vec{g}^m\\\\ &\qquad=\Gamma_{ik,j}+\Gamma_{jk,i} \qquad(d) \end{aligned}
∂xk∂gij=∂xk∂(gi⋅gj)=∂xk∂gi⋅gj+gi⋅∂xk∂gj=Γik,mgm⋅gj+gi⋅Γjk,mgm=Γik,j+Γjk,i(d)
同理,
∂
g
j
k
∂
x
i
=
Γ
j
i
,
k
+
Γ
k
i
,
j
∂
g
k
i
∂
x
j
=
Γ
k
j
,
i
+
Γ
i
j
,
k
\dfrac{\partial g_{jk}}{\partial x^i}=\Gamma_{ji,k}+\Gamma_{ki,j}\\\ \\ \dfrac{\partial g_{ki}}{\partial x^j}=\Gamma_{kj,i}+\Gamma_{ij,k}
∂xi∂gjk=Γji,k+Γki,j ∂xj∂gki=Γkj,i+Γij,k
则
Γ
i
j
,
k
=
1
2
(
∂
g
i
k
∂
x
j
+
∂
g
j
k
∂
x
i
−
∂
g
i
j
∂
x
k
)
(
e
)
\Gamma_{ij,k}=\dfrac{1}{2}\left(\dfrac{\partial g_{ik}}{\partial x^j}+\dfrac{\partial g_{jk}}{\partial x^i}-\dfrac{\partial g_{ij}}{\partial x^k}\right)\qquad(e)
Γij,k=21(∂xj∂gik+∂xi∂gjk−∂xk∂gij)(e)
2.4. 第二类Christoffel符号与协变基矢的混合积 g \sqrt{g} g 的关系
∂
g
∂
x
l
=
∂
∂
x
l
[
g
⃗
1
⋅
(
g
⃗
2
×
g
⃗
3
)
]
=
∂
g
⃗
1
∂
x
l
⋅
(
g
⃗
2
×
g
⃗
3
)
+
g
⃗
1
⋅
(
∂
g
⃗
2
∂
x
l
×
g
⃗
3
)
+
g
⃗
1
⋅
(
g
⃗
2
×
∂
g
⃗
3
∂
x
l
)
=
Γ
1
l
k
g
⃗
k
⋅
(
g
⃗
2
×
g
⃗
3
)
+
g
⃗
1
⋅
(
Γ
2
l
k
g
⃗
k
×
g
⃗
3
)
+
g
⃗
1
⋅
(
g
⃗
2
×
Γ
3
l
k
g
⃗
k
)
=
Γ
1
l
1
g
⃗
1
⋅
(
g
⃗
2
×
g
⃗
3
)
+
g
⃗
1
⋅
(
Γ
2
l
2
g
⃗
2
×
g
⃗
3
)
+
g
⃗
1
⋅
(
g
⃗
2
×
Γ
3
l
3
g
⃗
3
)
=
Γ
k
l
k
g
(
f
)
\begin{aligned} & \dfrac{\partial\sqrt{g}}{\partial x^l}=\dfrac{\partial}{\partial x^l}[\vec{g}_1\cdot(\vec{g}_2\times\vec{g}_3)]\\\\ & \ \qquad=\dfrac{\partial \vec{g}_1}{\partial x^l}\cdot(\vec{g}_2\times\vec{g}_3)+\vec{g}_1\cdot(\dfrac{\partial\vec{g}_2}{\partial x^l}\times\vec{g}_3)+\vec{g}_1\cdot(\vec{g}_2\times\dfrac{\partial\vec{g}_3}{\partial x^l})\\\\ & \ \qquad=\Gamma_{1l}^k\vec{g}_k\cdot(\vec{g}_2\times\vec{g}_3)+\vec{g}_1\cdot(\Gamma_{2l}^k\vec{g}_k\times\vec{g}_3)+\vec{g}_1\cdot(\vec{g}_2\times\Gamma_{3l}^k\vec{g}_k)\\\\ & \ \qquad=\Gamma_{1l}^1\vec{g}_1\cdot(\vec{g}_2\times\vec{g}_3)+\vec{g}_1\cdot(\Gamma_{2l}^2\vec{g}_2\times\vec{g}_3)+\vec{g}_1\cdot(\vec{g}_2\times\Gamma_{3l}^3\vec{g}_3)\\\\ & \ \qquad=\Gamma_{kl}^k\sqrt{g}\qquad(f) \end{aligned}
∂xl∂g=∂xl∂[g1⋅(g2×g3)] =∂xl∂g1⋅(g2×g3)+g1⋅(∂xl∂g2×g3)+g1⋅(g2×∂xl∂g3) =Γ1lkgk⋅(g2×g3)+g1⋅(Γ2lkgk×g3)+g1⋅(g2×Γ3lkgk) =Γ1l1g1⋅(g2×g3)+g1⋅(Γ2l2g2×g3)+g1⋅(g2×Γ3l3g3) =Γklkg(f)
由于,
g
≠
0
\sqrt{g}\ne0
g=0
Γ
k
l
k
=
1
g
∂
g
∂
x
l
=
∂
l
n
(
g
)
∂
x
l
(
g
)
\Gamma_{kl}^k=\dfrac{1}{\sqrt{g}}\dfrac{\partial\sqrt{g}}{\partial x^l}=\dfrac{\partial ln(\sqrt{g})}{\partial x^l}\qquad(g)
Γklk=g1∂xl∂g=∂xl∂ln(g)(g)
2.5. 正交曲线坐标系中的Christoffel符号
在正交曲线坐标系中,
g
⃗
i
⋅
g
⃗
j
=
0
(
i
≠
j
)
\vec{g}_i\cdot\vec{g}_j=0 \ (i\ne j)
gi⋅gj=0 (i=j)
故根据(e)式知:(不对指标求和)
(1) 当 Christoffel 符号的三个指标均不相同时,
i
≠
j
≠
k
i\ne j\ne k
i=j=k
Γ
i
j
,
k
=
0
Γ
i
j
k
=
0
(
i
≠
j
≠
k
)
\Gamma_{ij,k}=0\qquad \Gamma^{k}_{ij}=0\ (i\ne j\ne k)
Γij,k=0Γijk=0 (i=j=k)
(2) 只有前两指标相同时,
i
=
j
≠
k
i=j\ne k
i=j=k
Γ
i
i
,
k
=
−
1
2
∂
g
i
i
∂
x
k
=
−
A
i
∂
A
i
∂
x
k
Γ
i
i
k
=
∑
l
g
k
l
Γ
i
i
,
l
=
g
k
k
Γ
i
i
,
k
=
−
A
i
A
k
2
∂
A
i
∂
x
k
\Gamma_{ii,k}=-\frac{1}{2}\frac{\partial g_{ii}}{\partial x^k}=-A_i\frac{\partial A_i}{\partial x^k}\\\ \\ \Gamma_{ii}^{k}=\sum_{l}g^{kl}\Gamma_{ii,l}=g^{kk}\Gamma_{ii,k}=-\frac{A_i}{A_k^2}\frac{\partial A_i}{\partial x^k}
Γii,k=−21∂xk∂gii=−Ai∂xk∂Ai Γiik=l∑gklΓii,l=gkkΓii,k=−Ak2Ai∂xk∂Ai
(3) 第一个指标或第二个指标与第三个指标相同时,
i
=
k
≠
j
或
j
=
k
≠
i
i=k\ne j或j=k\ne i
i=k=j或j=k=i
Γ
j
i
,
i
=
Γ
i
j
,
i
=
1
2
∂
g
i
i
∂
x
j
=
A
i
∂
A
i
∂
x
j
Γ
j
i
i
=
Γ
i
j
i
=
∑
k
g
i
k
Γ
i
j
,
k
=
g
i
i
Γ
i
j
,
i
=
1
A
i
∂
A
i
∂
x
j
=
∂
l
n
(
A
i
)
∂
x
j
\Gamma_{ji,i}=\Gamma_{ij,i}=\frac{1}{2}\frac{\partial g_{ii}}{\partial x^j}=A_i\frac{\partial A_i}{\partial x^j}\\\ \\ \Gamma_{ji}^{i}=\Gamma_{ij}^{i}=\sum_{k}g^{ik}\Gamma_{ij,k}=g^{ii}\Gamma_{ij,i}=\frac{1}{A_i}\frac{\partial A_i}{\partial x^j}=\frac{\partial ln(A_i)}{\partial x^j}
Γji,i=Γij,i=21∂xj∂gii=Ai∂xj∂Ai Γjii=Γiji=k∑gikΓij,k=giiΓij,i=Ai1∂xj∂Ai=∂xj∂ln(Ai)
(4) 三指标均相同时,
i
=
j
=
k
i=j=k
i=j=k
Γ
i
i
,
i
=
1
2
∂
g
i
i
∂
x
i
=
A
i
∂
A
i
∂
x
i
Γ
i
i
i
=
∑
k
g
i
k
Γ
i
i
,
k
=
g
i
i
Γ
i
i
,
i
=
1
A
i
∂
A
i
∂
x
i
=
∂
l
n
(
A
i
)
∂
x
i
\Gamma_{ii,i}=\dfrac{1}{2}\dfrac{\partial g_{ii}}{\partial x^i}=A_i\dfrac{\partial A_i}{\partial x^i}\\\ \\ \Gamma_{ii}^{i}=\sum_{k}g^{ik}\Gamma_{ii,k}=g^{ii}\Gamma_{ii,i}=\frac{1}{A_i}\dfrac{\partial A_i}{\partial x^i}=\dfrac{\partial ln(A_i)}{\partial x^i}
Γii,i=21∂xi∂gii=Ai∂xi∂Ai Γiii=k∑gikΓii,k=giiΓii,i=Ai1∂xi∂Ai=∂xi∂ln(Ai)
其中,
A
i
A_i
Ai 为 Lame 常数。
2.6. Christoffel符号不是三阶张量的分量
首先,在仿射坐标系中基矢量不随坐标改变,因此仿射坐标系的Christoffel符号均为0,而在一般坐标系中Christoffel符号并不一定等于零,这说明Christoffel符号必定不是三阶张量的分量。下面通过Christoffel符号的坐标转换关系来说明它不是三阶张量的分量:
Γ
i
′
j
′
k
′
=
∂
g
⃗
i
′
∂
x
j
′
⋅
g
⃗
k
′
=
∂
(
β
i
′
m
g
⃗
m
)
∂
x
p
∂
x
p
∂
x
j
′
⋅
β
n
k
′
g
⃗
n
=
β
i
′
m
β
n
k
′
∂
x
p
∂
x
j
′
∂
g
⃗
m
∂
x
p
⋅
g
⃗
n
+
β
n
k
′
∂
β
i
′
m
∂
x
p
∂
x
p
∂
x
j
′
g
⃗
m
⋅
g
⃗
n
=
β
n
k
′
β
i
′
m
β
j
′
p
∂
g
⃗
m
∂
x
p
⋅
g
⃗
n
+
∂
x
k
′
∂
x
n
∂
2
x
n
∂
x
i
′
∂
x
j
′
=
β
n
k
′
β
i
′
m
β
j
′
p
Γ
m
p
n
+
∂
x
k
′
∂
x
n
∂
2
x
n
∂
x
i
′
∂
x
j
′
\begin{aligned} & \Gamma^{k'}_{i'j'}=\dfrac{\partial \vec{g}_{i'}}{\partial x^{j'}}\cdot\vec{g}^{k'}\\\\ & \ \ \ \quad=\dfrac{\partial (\beta^{m}_{i'}\vec{g}_{m})}{\partial x^{p}}\dfrac{\partial x^p}{\partial x^{j'}}\cdot\beta^{k'}_{n}\vec{g}^{n}\\\\ & \ \ \ \quad=\beta^{m}_{i'}\beta^{k'}_{n}\dfrac{\partial x^p}{\partial x^{j'}}\dfrac{\partial \vec{g}_{m}}{\partial x^{p}}\cdot\vec{g}^{n}+\beta^{k'}_{n}\dfrac{\partial \beta^{m}_{i'}}{\partial x^{p}}\dfrac{\partial x^p}{\partial x^{j'}}\vec{g}_{m}\cdot\vec{g}^{n}\\\\ & \ \ \ \quad=\beta^{k'}_{n}\beta^{m}_{i'}\beta^{p}_{j'}\ \dfrac{\partial \vec{g}_{m}}{\partial x^{p}}\cdot\vec{g}^{n}+\dfrac{\partial x^{k'}}{\partial x^{n}}\dfrac{\partial^2 x^n}{\partial x^{i'}\partial x^{j'}}\\\\ & \ \ \ \quad=\beta^{k'}_{n}\beta^{m}_{i'}\beta^{p}_{j'}\ \Gamma^n_{mp}+\dfrac{\partial x^{k'}}{\partial x^{n}}\dfrac{\partial^2 x^n}{\partial x^{i'}\partial x^{j'}} \end{aligned}
Γi′j′k′=∂xj′∂gi′⋅gk′ =∂xp∂(βi′mgm)∂xj′∂xp⋅βnk′gn =βi′mβnk′∂xj′∂xp∂xp∂gm⋅gn+βnk′∂xp∂βi′m∂xj′∂xpgm⋅gn =βnk′βi′mβj′p ∂xp∂gm⋅gn+∂xn∂xk′∂xi′∂xj′∂2xn =βnk′βi′mβj′p Γmpn+∂xn∂xk′∂xi′∂xj′∂2xn
同理,
Γ
i
j
k
=
β
n
′
k
β
i
m
′
β
j
p
′
Γ
m
′
p
′
n
′
+
∂
x
k
∂
x
n
′
∂
2
x
n
′
∂
x
i
∂
x
j
\Gamma^{k}_{ij}=\beta^{k}_{n'}\beta^{m'}_{i}\beta^{p'}_{j}\ \Gamma^{n'}_{m'p'}+\dfrac{\partial x^{k}}{\partial x^{n'}}\dfrac{\partial^2 x^{n'}}{\partial x^{i}\partial x^{j}}
Γijk=βn′kβim′βjp′ Γm′p′n′+∂xn′∂xk∂xi∂xj∂2xn′
另外
Γ
i
′
j
′
,
k
′
=
g
l
′
k
′
Γ
i
′
j
′
l
′
=
β
l
′
m
β
k
′
n
g
m
n
[
β
p
l
′
β
i
′
q
β
j
′
h
Γ
q
h
p
+
∂
x
l
′
∂
x
p
∂
2
x
p
∂
x
i
′
∂
x
j
′
]
=
δ
p
m
β
k
′
n
β
i
′
q
β
j
′
h
g
m
n
Γ
q
h
p
+
g
l
′
k
′
∂
x
l
′
∂
x
p
∂
2
x
p
∂
x
i
′
∂
x
j
′
=
β
k
′
n
β
i
′
q
β
j
′
h
Γ
q
h
,
n
+
g
l
′
k
′
∂
x
l
′
∂
x
p
∂
2
x
p
∂
x
i
′
∂
x
j
′
Γ
i
j
,
k
=
β
k
n
′
β
i
q
′
β
j
h
′
Γ
q
′
h
′
,
n
′
+
g
l
k
∂
x
l
∂
x
p
′
∂
2
x
p
′
∂
x
i
∂
x
j
\begin{aligned} &\Gamma_{i'j',k'}=g_{l'k'}\Gamma^{l'}_{i'j'}=\beta^m_{l'}\beta^n_{k'}g_{mn}\left[\beta^{l'}_{p}\beta^{q}_{i'}\beta^{h}_{j'}\ \Gamma^p_{qh}+\dfrac{\partial x^{l'}}{\partial x^{p}}\dfrac{\partial^2 x^p}{\partial x^{i'}\partial x^{j'}}\right]\\\\ &=\delta^m_p\beta^n_{k'}\beta^{q}_{i'}\beta^{h}_{j'}g_{mn}\ \Gamma^p_{qh}+g_{l'k'}\dfrac{\partial x^{l'}}{\partial x^{p}}\dfrac{\partial^2 x^p}{\partial x^{i'}\partial x^{j'}}\\\\ &=\beta^n_{k'}\beta^{q}_{i'}\beta^{h}_{j'}\ \Gamma_{qh,n}+g_{l'k'}\dfrac{\partial x^{l'}}{\partial x^{p}}\dfrac{\partial^2 x^p}{\partial x^{i'}\partial x^{j'}}\\\\ &\Gamma_{ij,k}=\beta^{n'}_{k}\beta^{q'}_{i}\beta^{h'}_{j}\ \Gamma_{q'h',n'}+g_{lk}\dfrac{\partial x^{l}}{\partial x^{p'}}\dfrac{\partial^2 x^{p'}}{\partial x^{i}\partial x^{j}} \end{aligned}
Γi′j′,k′=gl′k′Γi′j′l′=βl′mβk′ngmn[βpl′βi′qβj′h Γqhp+∂xp∂xl′∂xi′∂xj′∂2xp]=δpmβk′nβi′qβj′hgmn Γqhp+gl′k′∂xp∂xl′∂xi′∂xj′∂2xp=βk′nβi′qβj′h Γqh,n+gl′k′∂xp∂xl′∂xi′∂xj′∂2xpΓij,k=βkn′βiq′βjh′ Γq′h′,n′+glk∂xp′∂xl∂xi∂xj∂2xp′
3. 逆变基矢对曲线坐标的导数
∂ g ⃗ i ∂ x j = ∂ ∂ x j ( g i k g ⃗ k ) = ∂ g i k ∂ x j g ⃗ k + ∂ g ⃗ k ∂ x j g i k = ( Γ i j , k + Γ j k , i ) g ⃗ k + ∂ g ⃗ k ∂ x j g i k = Γ i j , k g ⃗ k ⟹ ∂ g ⃗ k ∂ x j g i k = − Γ j k , i g ⃗ k ⟹ ∂ g ⃗ k ∂ x j g i k g i m = − Γ j k , i g i m g ⃗ k ⟹ ∂ g ⃗ m ∂ x j = − Γ j k m g ⃗ k = − Γ j k m g n k g ⃗ n ( h ) \begin{aligned} & \dfrac{\partial\vec{g}_i}{\partial x^j}=\dfrac{\partial}{\partial x^j}(g_{ik}\vec{g}^k)=\dfrac{\partial g_{ik}}{\partial x^j}\vec{g}^k+\dfrac{\partial\vec{g}^k}{\partial x^j}g_{ik}\\\\ & \qquad=(\Gamma_{ij,k}+\Gamma_{jk,i})\vec{g}^k+\dfrac{\partial\vec{g}^k}{\partial x^j}g_{ik}\\\\ & \qquad=\Gamma_{ij,k}\vec{g}^k\\\\ & \Longrightarrow\dfrac{\partial\vec{g}^k}{\partial x^j}g_{ik}=-\Gamma_{jk,i}\vec{g}^k\\\\ & \Longrightarrow\dfrac{\partial\vec{g}^k}{\partial x^j}g_{ik}g^{im}=-\Gamma_{jk,i}g^{im}\vec{g}^k\\\\ & \Longrightarrow\dfrac{\partial\vec{g}^m}{\partial x^j}=-\Gamma_{jk}^m\vec{g}^k=-\Gamma_{jk}^mg^{nk}\vec{g}_n\qquad(h)\\\\ \end{aligned} ∂xj∂gi=∂xj∂(gikgk)=∂xj∂gikgk+∂xj∂gkgik=(Γij,k+Γjk,i)gk+∂xj∂gkgik=Γij,kgk⟹∂xj∂gkgik=−Γjk,igk⟹∂xj∂gkgikgim=−Γjk,igimgk⟹∂xj∂gm=−Γjkmgk=−Γjkmgnkgn(h)
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)