1. 协变基矢对曲线坐标的导数与Christoffel符号

由于 ∂ g ⃗ i ∂ x j   ( i , j = 1 , 2 , 3 ) \dfrac{\partial \vec{g}_i}{\partial x^j}\ (i,j=1,2,3) xjg i (i,j=1,2,3) 为一阶张量,也可在协变基或逆变基上就地展开,即:
∂ g ⃗ i ∂ x j = Γ i j k g ⃗ k = Γ i j , k g ⃗ k ( a ) \dfrac{\partial \vec{g}_i}{\partial x^j}=\Gamma^k_{ij}\vec{g}_k=\Gamma_{ij,k}\vec{g}^k\qquad(a) xjg i=Γijkg k=Γij,kg k(a)
其中,组合系数 Γ i j k 、 Γ i j , k \Gamma^k_{ij}、\Gamma_{ij,k} ΓijkΓij,k 分别称作第二类Christoffel符号与第一类Christoffel符号

2. Christoffel符号的计算与性质

2.1. Christoffel符号的计算

( a ) (a) (a)Christoffel符号的计算表达式为:
{ Γ i j k = ∂ g ⃗ i ∂ x j ⋅ g ⃗ k = ∂ 2 x ˉ p ∂ x i ∂ x j ∂ x k ∂ x ˉ p Γ i j , k = ∂ g ⃗ i ∂ x j ⋅ g ⃗ k = ∂ 2 x ˉ p ∂ x i ∂ x j ∂ x ˉ p ∂ x k ( b ) \begin{cases} \Gamma^k_{ij}=\dfrac{\partial \vec{g}_i}{\partial x^j}\cdot\vec{g}^k=\dfrac{\partial^2\bar{x}_p}{\partial x^i\partial x^j} \dfrac{\partial x^k}{\partial\bar{x}_p} \\\\ \Gamma_{ij,k}=\dfrac{\partial \vec{g}_i}{\partial x^j}\cdot\vec{g}_k=\dfrac{\partial^2\bar{x}_p}{\partial x^i\partial x^j} \dfrac{\partial\bar{x}_p}{\partial x^k} \end{cases}\qquad(b) Γijk=xjg ig k=xixj2xˉpxˉpxkΓij,k=xjg ig k=xixj2xˉpxkxˉp(b)
其中, x ˉ 1 ( x 1 , x 2 , x 3 ) 、 x ˉ 2 ( x 1 , x 2 , x 3 ) 、 x ˉ 3 ( x 1 , x 2 , x 3 ) \bar{x}_1(x^1,x^2,x^3)、\bar{x}_2(x^1,x^2,x^3)、\bar{x}_3(x^1,x^2,x^3) xˉ1(x1,x2,x3)xˉ2(x1,x2,x3)xˉ3(x1,x2,x3) 为仿射坐标。

2.2. Christoffel符号的对称性与指标升降关系

根据Christoffel符号的计算表达式,假设混合偏导与求导次序无关,则 Γ i j k 、 Γ i j , k \Gamma^k_{ij}、\Gamma_{ij,k} ΓijkΓij,k关于指标 i , j i,j i,j 均具有对称性。 根据 ( a ) (a) (a) 式有:
∂ g ⃗ i ∂ x j = Γ i j k g ⃗ k = Γ i j k g k l g ⃗ l = Γ i j , l g ⃗ l   ⟹ ( Γ i j k g k l − Γ i j , l ) g ⃗ l = 0 ⃗   ⟹ Γ i j , l = Γ i j k g k l   ⟹ Γ i j , l g l m = Γ i j k g k l g l m = Γ i j k δ k m = Γ i j m \begin{aligned} &\qquad\dfrac{\partial \vec{g}_i}{\partial x^j}=\Gamma^k_{ij}\vec{g}_k=\Gamma^k_{ij}g_{kl}\vec{g}^l=\Gamma_{ij,l}\vec{g}^l\\\ \\ &\Longrightarrow(\Gamma^k_{ij}g_{kl}-\Gamma_{ij,l})\vec{g}^l=\vec{0}\\\ \\ &\Longrightarrow \Gamma_{ij,l}=\Gamma^k_{ij}g_{kl} \\\ \\ &\Longrightarrow \Gamma_{ij,l}g^{lm}=\Gamma^k_{ij}g_{kl}g^{lm}=\Gamma^k_{ij}\delta^m_k=\Gamma^m_{ij} \end{aligned}    xjg i=Γijkg k=Γijkgklg l=Γij,lg l(ΓijkgklΓij,l)g l=0 Γij,l=ΓijkgklΓij,lglm=Γijkgklglm=Γijkδkm=Γijm
即,Christoffel符号关于第三指标 k k k 可以通过度量张量的协变/逆变分量实现指标升降:
{ Γ i j , l = Γ i j k   g k l Γ i j l = Γ i j , k   g k l ( c ) \begin{cases} \Gamma_{ij,l}=\Gamma^k_{ij}\ g_{kl} \\\\ \Gamma^l_{ij}=\Gamma_{ij,k}\ g^{kl} \end{cases}\qquad(c) Γij,l=Γijk gklΓijl=Γij,k gkl(c)

2.3. 度量张量的协变分量与第一类Christoffel符号的关系

∂ g i j ∂ x k = ∂ ∂ x k ( g ⃗ i ⋅ g ⃗ j ) = ∂ g ⃗ i ∂ x k ⋅ g ⃗ j + g ⃗ i ⋅ ∂ g ⃗ j ∂ x k = Γ i k , m g ⃗ m ⋅ g ⃗ j + g ⃗ i ⋅ Γ j k , m g ⃗ m = Γ i k , j + Γ j k , i ( d ) \begin{aligned} &\dfrac{\partial g_{ij}}{\partial x^k}=\dfrac{\partial}{\partial x^k}(\vec{g}_i\cdot\vec{g}_j)=\dfrac{\partial\vec{g}_i}{\partial x^k}\cdot\vec{g}_j+\vec{g}_i\cdot\dfrac{\partial\vec{g}_j}{\partial x^k}\\\\ &\qquad=\Gamma_{ik,m}\vec{g}^m\cdot\vec{g}_j+\vec{g}_i\cdot\Gamma_{jk,m}\vec{g}^m\\\\ &\qquad=\Gamma_{ik,j}+\Gamma_{jk,i} \qquad(d) \end{aligned} xkgij=xk(g ig j)=xkg ig j+g ixkg j=Γik,mg mg j+g iΓjk,mg m=Γik,j+Γjk,i(d)
同理,
∂ g j k ∂ x i = Γ j i , k + Γ k i , j   ∂ g k i ∂ x j = Γ k j , i + Γ i j , k \dfrac{\partial g_{jk}}{\partial x^i}=\Gamma_{ji,k}+\Gamma_{ki,j}\\\ \\ \dfrac{\partial g_{ki}}{\partial x^j}=\Gamma_{kj,i}+\Gamma_{ij,k} xigjk=Γji,k+Γki,j xjgki=Γkj,i+Γij,k

Γ i j , k = 1 2 ( ∂ g i k ∂ x j + ∂ g j k ∂ x i − ∂ g i j ∂ x k ) ( e ) \Gamma_{ij,k}=\dfrac{1}{2}\left(\dfrac{\partial g_{ik}}{\partial x^j}+\dfrac{\partial g_{jk}}{\partial x^i}-\dfrac{\partial g_{ij}}{\partial x^k}\right)\qquad(e) Γij,k=21(xjgik+xigjkxkgij)(e)

2.4. 第二类Christoffel符号与协变基矢的混合积 g \sqrt{g} g 的关系

∂ g ∂ x l = ∂ ∂ x l [ g ⃗ 1 ⋅ ( g ⃗ 2 × g ⃗ 3 ) ]   = ∂ g ⃗ 1 ∂ x l ⋅ ( g ⃗ 2 × g ⃗ 3 ) + g ⃗ 1 ⋅ ( ∂ g ⃗ 2 ∂ x l × g ⃗ 3 ) + g ⃗ 1 ⋅ ( g ⃗ 2 × ∂ g ⃗ 3 ∂ x l )   = Γ 1 l k g ⃗ k ⋅ ( g ⃗ 2 × g ⃗ 3 ) + g ⃗ 1 ⋅ ( Γ 2 l k g ⃗ k × g ⃗ 3 ) + g ⃗ 1 ⋅ ( g ⃗ 2 × Γ 3 l k g ⃗ k )   = Γ 1 l 1 g ⃗ 1 ⋅ ( g ⃗ 2 × g ⃗ 3 ) + g ⃗ 1 ⋅ ( Γ 2 l 2 g ⃗ 2 × g ⃗ 3 ) + g ⃗ 1 ⋅ ( g ⃗ 2 × Γ 3 l 3 g ⃗ 3 )   = Γ k l k g ( f ) \begin{aligned} & \dfrac{\partial\sqrt{g}}{\partial x^l}=\dfrac{\partial}{\partial x^l}[\vec{g}_1\cdot(\vec{g}_2\times\vec{g}_3)]\\\\ & \ \qquad=\dfrac{\partial \vec{g}_1}{\partial x^l}\cdot(\vec{g}_2\times\vec{g}_3)+\vec{g}_1\cdot(\dfrac{\partial\vec{g}_2}{\partial x^l}\times\vec{g}_3)+\vec{g}_1\cdot(\vec{g}_2\times\dfrac{\partial\vec{g}_3}{\partial x^l})\\\\ & \ \qquad=\Gamma_{1l}^k\vec{g}_k\cdot(\vec{g}_2\times\vec{g}_3)+\vec{g}_1\cdot(\Gamma_{2l}^k\vec{g}_k\times\vec{g}_3)+\vec{g}_1\cdot(\vec{g}_2\times\Gamma_{3l}^k\vec{g}_k)\\\\ & \ \qquad=\Gamma_{1l}^1\vec{g}_1\cdot(\vec{g}_2\times\vec{g}_3)+\vec{g}_1\cdot(\Gamma_{2l}^2\vec{g}_2\times\vec{g}_3)+\vec{g}_1\cdot(\vec{g}_2\times\Gamma_{3l}^3\vec{g}_3)\\\\ & \ \qquad=\Gamma_{kl}^k\sqrt{g}\qquad(f) \end{aligned} xlg =xl[g 1(g 2×g 3)] =xlg 1(g 2×g 3)+g 1(xlg 2×g 3)+g 1(g 2×xlg 3) =Γ1lkg k(g 2×g 3)+g 1(Γ2lkg k×g 3)+g 1(g 2×Γ3lkg k) =Γ1l1g 1(g 2×g 3)+g 1(Γ2l2g 2×g 3)+g 1(g 2×Γ3l3g 3) =Γklkg (f)
由于, g ≠ 0 \sqrt{g}\ne0 g =0
Γ k l k = 1 g ∂ g ∂ x l = ∂ l n ( g ) ∂ x l ( g ) \Gamma_{kl}^k=\dfrac{1}{\sqrt{g}}\dfrac{\partial\sqrt{g}}{\partial x^l}=\dfrac{\partial ln(\sqrt{g})}{\partial x^l}\qquad(g) Γklk=g 1xlg =xlln(g )(g)

2.5. 正交曲线坐标系中的Christoffel符号

正交曲线坐标系中,
g ⃗ i ⋅ g ⃗ j = 0   ( i ≠ j ) \vec{g}_i\cdot\vec{g}_j=0 \ (i\ne j) g ig j=0 (i=j)
故根据(e)式知:(不对指标求和)

(1) 当 Christoffel 符号的三个指标均不相同时, i ≠ j ≠ k i\ne j\ne k i=j=k
Γ i j , k = 0 Γ i j k = 0   ( i ≠ j ≠ k ) \Gamma_{ij,k}=0\qquad \Gamma^{k}_{ij}=0\ (i\ne j\ne k) Γij,k=0Γijk=0 (i=j=k)
(2) 只有前两指标相同时, i = j ≠ k i=j\ne k i=j=k
Γ i i , k = − 1 2 ∂ g i i ∂ x k = − A i ∂ A i ∂ x k   Γ i i k = ∑ l g k l Γ i i , l = g k k Γ i i , k = − A i A k 2 ∂ A i ∂ x k \Gamma_{ii,k}=-\frac{1}{2}\frac{\partial g_{ii}}{\partial x^k}=-A_i\frac{\partial A_i}{\partial x^k}\\\ \\ \Gamma_{ii}^{k}=\sum_{l}g^{kl}\Gamma_{ii,l}=g^{kk}\Gamma_{ii,k}=-\frac{A_i}{A_k^2}\frac{\partial A_i}{\partial x^k} Γii,k=21xkgii=AixkAi Γiik=lgklΓii,l=gkkΓii,k=Ak2AixkAi
(3) 第一个指标或第二个指标与第三个指标相同时, i = k ≠ j 或 j = k ≠ i i=k\ne j或j=k\ne i i=k=jj=k=i
Γ j i , i = Γ i j , i = 1 2 ∂ g i i ∂ x j = A i ∂ A i ∂ x j   Γ j i i = Γ i j i = ∑ k g i k Γ i j , k = g i i Γ i j , i = 1 A i ∂ A i ∂ x j = ∂ l n ( A i ) ∂ x j \Gamma_{ji,i}=\Gamma_{ij,i}=\frac{1}{2}\frac{\partial g_{ii}}{\partial x^j}=A_i\frac{\partial A_i}{\partial x^j}\\\ \\ \Gamma_{ji}^{i}=\Gamma_{ij}^{i}=\sum_{k}g^{ik}\Gamma_{ij,k}=g^{ii}\Gamma_{ij,i}=\frac{1}{A_i}\frac{\partial A_i}{\partial x^j}=\frac{\partial ln(A_i)}{\partial x^j} Γji,i=Γij,i=21xjgii=AixjAi Γjii=Γiji=kgikΓij,k=giiΓij,i=Ai1xjAi=xjln(Ai)
(4) 三指标均相同时, i = j = k i=j=k i=j=k
Γ i i , i = 1 2 ∂ g i i ∂ x i = A i ∂ A i ∂ x i   Γ i i i = ∑ k g i k Γ i i , k = g i i Γ i i , i = 1 A i ∂ A i ∂ x i = ∂ l n ( A i ) ∂ x i \Gamma_{ii,i}=\dfrac{1}{2}\dfrac{\partial g_{ii}}{\partial x^i}=A_i\dfrac{\partial A_i}{\partial x^i}\\\ \\ \Gamma_{ii}^{i}=\sum_{k}g^{ik}\Gamma_{ii,k}=g^{ii}\Gamma_{ii,i}=\frac{1}{A_i}\dfrac{\partial A_i}{\partial x^i}=\dfrac{\partial ln(A_i)}{\partial x^i} Γii,i=21xigii=AixiAi Γiii=kgikΓii,k=giiΓii,i=Ai1xiAi=xiln(Ai)
其中, A i A_i AiLame 常数

2.6. Christoffel符号不是三阶张量的分量

首先,在仿射坐标系中基矢量不随坐标改变,因此仿射坐标系的Christoffel符号均为0,而在一般坐标系中Christoffel符号并不一定等于零,这说明Christoffel符号必定不是三阶张量的分量。下面通过Christoffel符号的坐标转换关系来说明它不是三阶张量的分量:
Γ i ′ j ′ k ′ = ∂ g ⃗ i ′ ∂ x j ′ ⋅ g ⃗ k ′     = ∂ ( β i ′ m g ⃗ m ) ∂ x p ∂ x p ∂ x j ′ ⋅ β n k ′ g ⃗ n     = β i ′ m β n k ′ ∂ x p ∂ x j ′ ∂ g ⃗ m ∂ x p ⋅ g ⃗ n + β n k ′ ∂ β i ′ m ∂ x p ∂ x p ∂ x j ′ g ⃗ m ⋅ g ⃗ n     = β n k ′ β i ′ m β j ′ p   ∂ g ⃗ m ∂ x p ⋅ g ⃗ n + ∂ x k ′ ∂ x n ∂ 2 x n ∂ x i ′ ∂ x j ′     = β n k ′ β i ′ m β j ′ p   Γ m p n + ∂ x k ′ ∂ x n ∂ 2 x n ∂ x i ′ ∂ x j ′ \begin{aligned} & \Gamma^{k'}_{i'j'}=\dfrac{\partial \vec{g}_{i'}}{\partial x^{j'}}\cdot\vec{g}^{k'}\\\\ & \ \ \ \quad=\dfrac{\partial (\beta^{m}_{i'}\vec{g}_{m})}{\partial x^{p}}\dfrac{\partial x^p}{\partial x^{j'}}\cdot\beta^{k'}_{n}\vec{g}^{n}\\\\ & \ \ \ \quad=\beta^{m}_{i'}\beta^{k'}_{n}\dfrac{\partial x^p}{\partial x^{j'}}\dfrac{\partial \vec{g}_{m}}{\partial x^{p}}\cdot\vec{g}^{n}+\beta^{k'}_{n}\dfrac{\partial \beta^{m}_{i'}}{\partial x^{p}}\dfrac{\partial x^p}{\partial x^{j'}}\vec{g}_{m}\cdot\vec{g}^{n}\\\\ & \ \ \ \quad=\beta^{k'}_{n}\beta^{m}_{i'}\beta^{p}_{j'}\ \dfrac{\partial \vec{g}_{m}}{\partial x^{p}}\cdot\vec{g}^{n}+\dfrac{\partial x^{k'}}{\partial x^{n}}\dfrac{\partial^2 x^n}{\partial x^{i'}\partial x^{j'}}\\\\ & \ \ \ \quad=\beta^{k'}_{n}\beta^{m}_{i'}\beta^{p}_{j'}\ \Gamma^n_{mp}+\dfrac{\partial x^{k'}}{\partial x^{n}}\dfrac{\partial^2 x^n}{\partial x^{i'}\partial x^{j'}} \end{aligned} Γijk=xjg ig k   =xp(βimg m)xjxpβnkg n   =βimβnkxjxpxpg mg n+βnkxpβimxjxpg mg n   =βnkβimβjp xpg mg n+xnxkxixj2xn   =βnkβimβjp Γmpn+xnxkxixj2xn
同理,
Γ i j k = β n ′ k β i m ′ β j p ′   Γ m ′ p ′ n ′ + ∂ x k ∂ x n ′ ∂ 2 x n ′ ∂ x i ∂ x j \Gamma^{k}_{ij}=\beta^{k}_{n'}\beta^{m'}_{i}\beta^{p'}_{j}\ \Gamma^{n'}_{m'p'}+\dfrac{\partial x^{k}}{\partial x^{n'}}\dfrac{\partial^2 x^{n'}}{\partial x^{i}\partial x^{j}} Γijk=βnkβimβjp Γmpn+xnxkxixj2xn
另外
Γ i ′ j ′ , k ′ = g l ′ k ′ Γ i ′ j ′ l ′ = β l ′ m β k ′ n g m n [ β p l ′ β i ′ q β j ′ h   Γ q h p + ∂ x l ′ ∂ x p ∂ 2 x p ∂ x i ′ ∂ x j ′ ] = δ p m β k ′ n β i ′ q β j ′ h g m n   Γ q h p + g l ′ k ′ ∂ x l ′ ∂ x p ∂ 2 x p ∂ x i ′ ∂ x j ′ = β k ′ n β i ′ q β j ′ h   Γ q h , n + g l ′ k ′ ∂ x l ′ ∂ x p ∂ 2 x p ∂ x i ′ ∂ x j ′ Γ i j , k = β k n ′ β i q ′ β j h ′   Γ q ′ h ′ , n ′ + g l k ∂ x l ∂ x p ′ ∂ 2 x p ′ ∂ x i ∂ x j \begin{aligned} &\Gamma_{i'j',k'}=g_{l'k'}\Gamma^{l'}_{i'j'}=\beta^m_{l'}\beta^n_{k'}g_{mn}\left[\beta^{l'}_{p}\beta^{q}_{i'}\beta^{h}_{j'}\ \Gamma^p_{qh}+\dfrac{\partial x^{l'}}{\partial x^{p}}\dfrac{\partial^2 x^p}{\partial x^{i'}\partial x^{j'}}\right]\\\\ &=\delta^m_p\beta^n_{k'}\beta^{q}_{i'}\beta^{h}_{j'}g_{mn}\ \Gamma^p_{qh}+g_{l'k'}\dfrac{\partial x^{l'}}{\partial x^{p}}\dfrac{\partial^2 x^p}{\partial x^{i'}\partial x^{j'}}\\\\ &=\beta^n_{k'}\beta^{q}_{i'}\beta^{h}_{j'}\ \Gamma_{qh,n}+g_{l'k'}\dfrac{\partial x^{l'}}{\partial x^{p}}\dfrac{\partial^2 x^p}{\partial x^{i'}\partial x^{j'}}\\\\ &\Gamma_{ij,k}=\beta^{n'}_{k}\beta^{q'}_{i}\beta^{h'}_{j}\ \Gamma_{q'h',n'}+g_{lk}\dfrac{\partial x^{l}}{\partial x^{p'}}\dfrac{\partial^2 x^{p'}}{\partial x^{i}\partial x^{j}} \end{aligned} Γij,k=glkΓijl=βlmβkngmn[βplβiqβjh Γqhp+xpxlxixj2xp]=δpmβknβiqβjhgmn Γqhp+glkxpxlxixj2xp=βknβiqβjh Γqh,n+glkxpxlxixj2xpΓij,k=βknβiqβjh Γqh,n+glkxpxlxixj2xp

3. 逆变基矢对曲线坐标的导数

∂ g ⃗ i ∂ x j = ∂ ∂ x j ( g i k g ⃗ k ) = ∂ g i k ∂ x j g ⃗ k + ∂ g ⃗ k ∂ x j g i k = ( Γ i j , k + Γ j k , i ) g ⃗ k + ∂ g ⃗ k ∂ x j g i k = Γ i j , k g ⃗ k ⟹ ∂ g ⃗ k ∂ x j g i k = − Γ j k , i g ⃗ k ⟹ ∂ g ⃗ k ∂ x j g i k g i m = − Γ j k , i g i m g ⃗ k ⟹ ∂ g ⃗ m ∂ x j = − Γ j k m g ⃗ k = − Γ j k m g n k g ⃗ n ( h ) \begin{aligned} & \dfrac{\partial\vec{g}_i}{\partial x^j}=\dfrac{\partial}{\partial x^j}(g_{ik}\vec{g}^k)=\dfrac{\partial g_{ik}}{\partial x^j}\vec{g}^k+\dfrac{\partial\vec{g}^k}{\partial x^j}g_{ik}\\\\ & \qquad=(\Gamma_{ij,k}+\Gamma_{jk,i})\vec{g}^k+\dfrac{\partial\vec{g}^k}{\partial x^j}g_{ik}\\\\ & \qquad=\Gamma_{ij,k}\vec{g}^k\\\\ & \Longrightarrow\dfrac{\partial\vec{g}^k}{\partial x^j}g_{ik}=-\Gamma_{jk,i}\vec{g}^k\\\\ & \Longrightarrow\dfrac{\partial\vec{g}^k}{\partial x^j}g_{ik}g^{im}=-\Gamma_{jk,i}g^{im}\vec{g}^k\\\\ & \Longrightarrow\dfrac{\partial\vec{g}^m}{\partial x^j}=-\Gamma_{jk}^m\vec{g}^k=-\Gamma_{jk}^mg^{nk}\vec{g}_n\qquad(h)\\\\ \end{aligned} xjg i=xj(gikg k)=xjgikg k+xjg kgik=(Γij,k+Γjk,i)g k+xjg kgik=Γij,kg kxjg kgik=Γjk,ig kxjg kgikgim=Γjk,igimg kxjg m=Γjkmg k=Γjkmgnkg n(h)

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐