(二)矩阵范数
本文主要内容如下:1. 矩阵范数2. 矩阵的算子范数
本文主要内容如下:
1. 矩阵范数
定义 如果矩阵 A ∈ R m × n \bold A\in\mathbb{R}^{m\times n} A∈Rm×n 的某个非负实值函数 N ( A ) = ∣ ∣ A ∣ ∣ N(\bold A)=||\bold A|| N(A)=∣∣A∣∣,满足如下条件:
(1) ∣ ∣ A ∣ ∣ ≥ 0 ,当且仅当 A = 0 时取等号(正定性) ||\bold A||\ge0,当且仅当\bold A=0时取等号(正定性) ∣∣A∣∣≥0,当且仅当A=0时取等号(正定性)
(2) ∣ ∣ c A ∣ ∣ = ∣ c ∣ ⋅ ∣ ∣ A ∣ ∣ , c ∈ R (齐次性) ||c\bold{A}||=|c|\cdot||\bold{A}||,c\in\mathbb{R}(齐次性) ∣∣cA∣∣=∣c∣⋅∣∣A∣∣,c∈R(齐次性)
(3) ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ (三角不等式) ||\bold{A+B}||\le||\bold{A}||+||\bold{B}||(三角不等式) ∣∣A+B∣∣≤∣∣A∣∣+∣∣B∣∣(三角不等式)
(4) ∣ ∣ A ⋅ B ∣ ∣ m × s ≤ ∣ ∣ A ∣ ∣ m × n ⋅ ∣ ∣ B ∣ ∣ n × s (相容性 / 次乘性) ||\bold{A\cdot B}||_{m\times s}\le||\bold A||_{m\times n}\cdot||\bold{B}||_{n\times s}(相容性/次乘性) ∣∣A⋅B∣∣m×s≤∣∣A∣∣m×n⋅∣∣B∣∣n×s(相容性/次乘性)
则称 ∣ ∣ A ∣ ∣ ||\bold A|| ∣∣A∣∣ 为定义在 R n × n \mathbb{R}^{n\times n} Rn×n 上的一个矩阵范数。若该非负实值函数不满足条件 (4) 仅满足条件 (1~3),则称为广义矩阵范数。
根据矩阵范数的三角不等式有:
∣
∣
A
−
B
∣
∣
+
∣
∣
B
∣
∣
≥
∣
∣
A
∣
∣
⟹
∣
∣
A
−
B
∣
∣
≥
∣
∣
A
∣
∣
−
∣
∣
B
∣
∣
∣
∣
A
−
B
∣
∣
+
∣
∣
A
∣
∣
=
∣
∣
B
−
A
∣
∣
+
∣
∣
A
∣
∣
≥
∣
∣
B
∣
∣
⟹
∣
∣
A
−
B
∣
∣
≥
∣
∣
B
∣
∣
−
∣
∣
A
∣
∣
\begin{aligned} &||\bold A-\bold B||+||\bold B||\ge||\bold A||\Longrightarrow ||\bold A-\bold B||\ge||\bold A||-||\bold B|| \\\\ &||\bold A-\bold B||+||\bold A||=||\bold B-\bold A||+||\bold A||\ge||\bold B||\Longrightarrow ||\bold A-\bold B||\ge||\bold B||-||\bold A|| \end{aligned}
∣∣A−B∣∣+∣∣B∣∣≥∣∣A∣∣⟹∣∣A−B∣∣≥∣∣A∣∣−∣∣B∣∣∣∣A−B∣∣+∣∣A∣∣=∣∣B−A∣∣+∣∣A∣∣≥∣∣B∣∣⟹∣∣A−B∣∣≥∣∣B∣∣−∣∣A∣∣
结合上述两式与三角不等式,便有:
∣
∣
∣
A
∣
∣
−
∣
∣
B
∣
∣
∣
≤
∣
∣
A
−
B
∣
∣
≤
∣
∣
A
∣
∣
+
∣
∣
B
∣
∣
|\ ||\bold A||-||\bold B||\ |\le||\bold A-\bold B||\le||\bold A||+||\bold B||
∣ ∣∣A∣∣−∣∣B∣∣ ∣≤∣∣A−B∣∣≤∣∣A∣∣+∣∣B∣∣
由常用的向量范数:1-范数,欧式范数,最大范数,可以定义如下矩阵的实值函数:
(
1
)
∣
∣
A
∣
∣
M
1
≜
∑
i
=
1
m
∑
j
=
1
n
∣
A
∣
i
j
;
(
2
)
∣
∣
A
∣
∣
F
≜
∑
i
=
1
m
∑
j
=
1
n
a
i
j
2
=
t
r
(
A
T
A
)
(
F
r
o
b
e
n
i
u
s
范数);
(
3
)
∣
∣
A
∣
∣
M
∞
′
=
max
1
≤
i
≤
m
,
1
≤
j
≤
n
∣
a
i
j
∣
(一种广义矩阵范数)
\begin{aligned} &(1)\quad ||\bold{A}||_{M_1}\triangleq\sum_{i=1}^m\sum_{j=1}^n|A|_{ij};\\\\ &(2)\quad ||\bold{A}||_{F}\triangleq\sqrt{\sum_{i=1}^m\sum_{j=1}^na_{ij}^2}=\sqrt{tr(\bold A^T\bold A)}(Frobenius范数);\\\\ &(3)\quad ||\bold{A}||_{M'_\infty}=\max_{1\le i\le m,1\le j\le n}|a_{ij}|(一种广义矩阵范数) \end{aligned}
(1)∣∣A∣∣M1≜i=1∑mj=1∑n∣A∣ij;(2)∣∣A∣∣F≜i=1∑mj=1∑naij2=tr(ATA)(Frobenius范数);(3)∣∣A∣∣M∞′=1≤i≤m,1≤j≤nmax∣aij∣(一种广义矩阵范数)
它们直接由向量范数推广而来,显然是满足条件(1~3)的,但是否满足相容性条件(是否可以被称为矩阵范数)仍需要验证:
∣
∣
A
m
×
n
B
n
×
s
∣
∣
M
1
=
∑
i
=
1
m
∑
j
=
1
s
(
∣
a
i
1
b
1
j
+
a
i
2
b
2
j
+
⋯
+
a
i
n
b
n
j
∣
)
≤
∑
i
=
1
m
∑
j
=
1
s
(
∣
a
i
1
∣
∣
b
1
j
∣
+
∣
a
i
2
∣
∣
b
2
j
∣
+
⋯
+
∣
a
i
n
∣
∣
b
n
j
∣
)
≤
∑
i
=
1
m
∑
j
=
1
s
(
∣
a
i
1
∣
+
∣
a
i
2
∣
+
⋯
+
∣
a
i
n
∣
)
(
∣
b
1
j
∣
+
∣
b
2
j
∣
+
⋯
+
∣
b
n
j
∣
)
≤
∑
i
=
1
m
(
∣
a
i
1
∣
+
∣
a
i
2
∣
+
⋯
+
∣
a
i
n
∣
)
⋅
∑
j
=
1
s
(
∣
b
1
j
∣
+
∣
b
2
j
∣
+
⋯
+
∣
b
n
j
∣
)
=
∑
i
=
1
m
∑
j
=
1
n
∣
a
i
j
∣
∑
i
=
1
n
∑
j
=
1
s
∣
b
i
j
∣
=
∣
∣
A
∣
∣
M
1
⋅
∣
∣
B
∣
∣
M
1
∣
∣
A
m
×
n
B
n
×
s
∣
∣
F
=
∑
i
=
1
m
∑
j
=
1
s
(
a
i
1
b
1
j
+
a
i
2
b
2
j
+
⋯
+
a
i
n
b
n
j
)
2
≤
∑
i
=
1
m
∑
j
=
1
s
(
a
i
1
2
+
a
i
2
2
+
⋯
+
a
i
n
2
)
⋅
(
b
1
j
2
+
b
2
j
2
+
⋯
+
b
n
j
2
)
≤
∑
i
=
1
m
(
a
i
1
2
+
a
i
2
2
+
⋯
+
a
i
n
2
)
∑
j
=
1
s
(
b
1
j
2
+
b
2
j
2
+
⋯
+
b
n
j
2
)
=
∣
∣
A
∣
∣
F
⋅
∣
∣
B
∣
∣
F
\begin{aligned} &||\bold{A_{m\times n}B_{n\times s}}||_{M_1}=\sum_{i=1}^m\sum_{j=1}^s(|a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{in}b_{nj}|)\\\\ &\qquad\qquad\qquad\quad\le\sum_{i=1}^m\sum_{j=1}^s(|a_{i1}||b_{1j}|+|a_{i2}||b_{2j}|+\dots+|a_{in}||b_{nj}|)\\\\ &\qquad\qquad\qquad\quad\le\sum_{i=1}^m\sum_{j=1}^s(|a_{i1}|+|a_{i2}|+\dots+|a_{in}|)(|b_{1j}|+|b_{2j}|+\dots+|b_{nj}|)\\\\ &\qquad\qquad\qquad\quad\le\sum_{i=1}^m(|a_{i1}|+|a_{i2}|+\dots+|a_{in}|)\cdot\sum_{j=1}^s(|b_{1j}|+|b_{2j}|+\dots+|b_{nj}|)\\\\ &\qquad\qquad\qquad\quad=\sum_{i=1}^m\sum_{j=1}^n|a_{ij}|\ \sum_{i=1}^n\sum_{j=1}^s|b_{ij}|=||\bold{A}||_{M_1}\cdot||\bold{B}||_{M_1}\\\\ &\\\\ &||\bold{A_{m\times n}B_{n\times s}}||_{F}=\sqrt{\sum_{i=1}^m\sum_{j=1}^s(a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{in}b_{nj})^2}\\\\ &\qquad\qquad\qquad\quad\le\sqrt{\sum_{i=1}^m\sum_{j=1}^s(a_{i1}^2+a_{i2}^2+\dots+a_{in}^2)\cdot(b_{1j}^2+b_{2j}^2+\dots+b_{nj}^2)}\\\\ &\qquad\qquad\qquad\quad\le\sqrt{\sum_{i=1}^m(a_{i1}^2+a_{i2}^2+\dots+a_{in}^2)}\sqrt{\sum_{j=1}^s(b_{1j}^2+b_{2j}^2+\dots+b_{nj}^2)}\\\\ &\qquad\qquad\qquad\quad=||\bold{A}||_F\cdot||\bold B||_F \end{aligned}
∣∣Am×nBn×s∣∣M1=i=1∑mj=1∑s(∣ai1b1j+ai2b2j+⋯+ainbnj∣)≤i=1∑mj=1∑s(∣ai1∣∣b1j∣+∣ai2∣∣b2j∣+⋯+∣ain∣∣bnj∣)≤i=1∑mj=1∑s(∣ai1∣+∣ai2∣+⋯+∣ain∣)(∣b1j∣+∣b2j∣+⋯+∣bnj∣)≤i=1∑m(∣ai1∣+∣ai2∣+⋯+∣ain∣)⋅j=1∑s(∣b1j∣+∣b2j∣+⋯+∣bnj∣)=i=1∑mj=1∑n∣aij∣ i=1∑nj=1∑s∣bij∣=∣∣A∣∣M1⋅∣∣B∣∣M1∣∣Am×nBn×s∣∣F=i=1∑mj=1∑s(ai1b1j+ai2b2j+⋯+ainbnj)2≤i=1∑mj=1∑s(ai12+ai22+⋯+ain2)⋅(b1j2+b2j2+⋯+bnj2)≤i=1∑m(ai12+ai22+⋯+ain2)j=1∑s(b1j2+b2j2+⋯+bnj2)=∣∣A∣∣F⋅∣∣B∣∣F
对于(3)定义的矩阵实值函数而言,其并不满足相容性条件,通过举反例可以说明。对(3)重新进行定义便可符合矩阵范数的定义:
∣
∣
A
m
×
n
∣
∣
M
∞
≜
m
n
(
max
1
≤
i
≤
m
,
1
≤
j
≤
n
∣
a
i
j
∣
)
||\bold A_{m\times n}||_{M_\infty}\triangleq mn\left(\max_{1\le i\le m,1\le j\le n}|a_{ij}|\right)
∣∣Am×n∣∣M∞≜mn(1≤i≤m,1≤j≤nmax∣aij∣)
证明,其满足相容性条件:
∣
∣
A
m
×
n
B
n
×
s
∣
∣
M
∞
=
m
s
[
max
1
≤
i
≤
m
,
1
≤
j
≤
s
∣
a
i
1
b
1
j
+
a
i
2
b
2
j
+
⋯
+
a
i
n
b
n
j
∣
]
≤
m
s
[
max
1
≤
i
≤
m
,
1
≤
j
≤
s
(
∣
a
i
1
∣
∣
b
1
j
∣
+
∣
a
i
2
∣
∣
b
2
j
∣
+
⋯
+
∣
a
i
n
∣
∣
b
n
j
∣
)
]
≤
m
s
[
max
1
≤
i
≤
m
,
1
≤
j
≤
s
(
∣
a
i
1
∣
+
∣
a
i
2
∣
+
⋯
+
∣
a
i
n
∣
)
(
∣
b
1
j
∣
+
∣
b
2
j
∣
+
⋯
+
∣
b
n
j
∣
)
]
≤
m
s
[
n
(
max
1
≤
i
≤
m
,
1
≤
j
≤
n
∣
a
i
j
∣
)
n
(
max
1
≤
i
≤
n
,
1
≤
j
≤
s
∣
b
i
j
∣
∣
)
]
=
m
n
(
max
1
≤
i
≤
m
,
1
≤
j
≤
n
∣
a
i
j
∣
)
⋅
n
s
(
max
1
≤
i
≤
n
,
1
≤
j
≤
s
∣
b
i
j
∣
∣
)
=
∣
∣
A
m
×
n
∣
∣
M
∞
⋅
∣
∣
B
n
×
s
∣
∣
M
∞
(证毕)
\begin{aligned} &||\bold A_{m\times n}\bold B_{n\times s}||_{M_\infty}=ms\left[\max_{1\le i\le m,1\le j\le s}|a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{in}b_{nj}|\right]\\\\ &\qquad\qquad\qquad\ \ \le ms\left[\max_{1\le i\le m,1\le j\le s}(|a_{i1}||b_{1j}|+|a_{i2}||b_{2j}|+\dots+|a_{in}||b_{nj}|)\right]\\\\ &\qquad\qquad\qquad\ \ \le ms\left[\max_{1\le i\le m,1\le j\le s}(|a_{i1}|+|a_{i2}|+\dots+|a_{in}|)(|b_{1j}|+|b_{2j}|+\dots+|b_{nj}|)\right]\\\\ &\qquad\qquad\qquad\ \ \le ms\left[n\left(\max_{1\le i\le m,1\le j\le n}|a_{ij}|\right)n\left(\max_{1\le i\le n,1\le j\le s}|b_{ij}||\right)\right]\\\\ &\qquad\qquad\qquad\ \ = mn\left(\max_{1\le i\le m,1\le j\le n}|a_{ij}|\right)\cdot ns\left(\max_{1\le i\le n,1\le j\le s}|b_{ij}||\right)\\\\ &\qquad\qquad\qquad\ \ =||\bold A_{m\times n}||_{M_\infty}\cdot||\bold B_{n\times s}||_{M_\infty}(证毕) \end{aligned}
∣∣Am×nBn×s∣∣M∞=ms[1≤i≤m,1≤j≤smax∣ai1b1j+ai2b2j+⋯+ainbnj∣] ≤ms[1≤i≤m,1≤j≤smax(∣ai1∣∣b1j∣+∣ai2∣∣b2j∣+⋯+∣ain∣∣bnj∣)] ≤ms[1≤i≤m,1≤j≤smax(∣ai1∣+∣ai2∣+⋯+∣ain∣)(∣b1j∣+∣b2j∣+⋯+∣bnj∣)] ≤ms[n(1≤i≤m,1≤j≤nmax∣aij∣)n(1≤i≤n,1≤j≤smax∣bij∣∣)] =mn(1≤i≤m,1≤j≤nmax∣aij∣)⋅ns(1≤i≤n,1≤j≤smax∣bij∣∣) =∣∣Am×n∣∣M∞⋅∣∣Bn×s∣∣M∞(证毕)
2. 矩阵的算子范数
定义 设
x
⃗
∈
R
n
,
A
∈
R
m
×
n
\vec{x}\in\mathbb{R}^n,\bold{A}\in\mathbb{R}^{m\times n}
x∈Rn,A∈Rm×n,则
A
x
⃗
∈
R
m
\bold{A}\vec{x}\in\mathbb{R}^{m}
Ax∈Rm,设已定义了向量空间
R
m
\mathbb{R}^{m}
Rm 与
R
n
\mathbb{R}^{n}
Rn 上的同种向量范数
∣
∣
∙
∣
∣
{||\bullet||}
∣∣∙∣∣ ,相应地可以定义一个矩阵的非负实值函数:
∣
∣
A
∣
∣
v
≜
max
∣
∣
x
⃗
∣
∣
v
≠
0
∣
∣
A
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
=
max
∣
∣
x
⃗
∣
∣
v
=
1
∣
∣
A
x
⃗
∣
∣
(
∗
)
||\bold A||_{v}\triangleq\max_{||\vec{x}||_v\ne0}\frac{||\bold{A}\vec{x}||}{||\vec{x}||}=\max_{||\vec{x}||_v=1}||\bold{A}\vec{x}||\quad(*)
∣∣A∣∣v≜∣∣x∣∣v=0max∣∣x∣∣∣∣Ax∣∣=∣∣x∣∣v=1max∣∣Ax∣∣(∗)
若该实函数为矩阵范数,将其称作算子范数,这意味着可以通过向量的函数来定义出一种矩阵范数,故通常也将其称之为从属于向量范数的矩阵范数(从属范数)。
证明算子范数的定义式满足矩阵范数的定义:
(1) 根据向量范数的非负性知
(
∗
)
(*)
(∗) 的非负性,
∣
∣
A
∣
∣
v
=
0
||\bold A||_{v}=0
∣∣A∣∣v=0 当且仅当
∀
x
⃗
≠
0
,
∣
∣
A
x
⃗
∣
∣
≡
0
\forall \vec{x}\ne0,||\bold{A}\vec{x}||\equiv0
∀x=0,∣∣Ax∣∣≡0
不妨取
x
⃗
=
e
⃗
i
(
i
=
1
,
2
,
…
,
n
)
\vec{x}=\vec{e}_i\ (i=1,2,\dots,n)
x=ei (i=1,2,…,n)
则可证得,
A
≡
[
0
]
\bold A\equiv[0]
A≡[0]。其中,
e
⃗
i
\vec{e}_i
ei 为n维向量空间的单位向量。
(2) 对于任意实数 c,
∣
∣
c
A
∣
∣
v
=
max
∣
∣
x
⃗
∣
∣
v
≠
0
∣
∣
c
A
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
=
∣
c
∣
(
max
∣
∣
x
⃗
∣
∣
v
≠
0
∣
∣
A
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
)
=
∣
c
∣
⋅
∣
∣
A
∣
∣
v
||c\bold{A}||_v=\max_{||\vec{x}||_v\ne0}\frac{||c\bold{A}\vec{x}||}{||\vec{x}||}=|c|\left(\max_{||\vec{x}||_v\ne0}\frac{||\bold{A}\vec{x}||}{||\vec{x}||}\right)=|c|\cdot||\bold A||_v
∣∣cA∣∣v=∣∣x∣∣v=0max∣∣x∣∣∣∣cAx∣∣=∣c∣(∣∣x∣∣v=0max∣∣x∣∣∣∣Ax∣∣)=∣c∣⋅∣∣A∣∣v
(3)
∣
∣
A
+
B
∣
∣
v
=
max
∣
∣
x
⃗
∣
∣
v
≠
0
∣
∣
(
A
+
B
)
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
=
max
∣
∣
x
⃗
∣
∣
v
≠
0
∣
∣
A
x
⃗
+
B
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
≤
max
∣
∣
x
⃗
∣
∣
v
≠
0
∣
∣
A
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
+
max
∣
∣
x
⃗
∣
∣
v
≠
0
∣
∣
B
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
=
∣
∣
A
∣
∣
v
+
∣
∣
B
∣
∣
v
||\bold{A+B}||_v=\max_{||\vec{x}||_v\ne0}\frac{||\bold{(A+B)}\vec{x}||}{||\vec{x}||}=\max_{||\vec{x}||_v\ne0}\frac{||\bold{A}\vec{x}+\bold{B}\vec{x}||}{||\vec{x}||}\\\ \\ \le\max_{||\vec{x}||_v\ne0}\frac{||\bold{A}\vec{x}||}{||\vec{x}||}+\max_{||\vec{x}||_v\ne0}\frac{||\bold{B}\vec{x}||}{||\vec{x}||}=||\bold A||_v+||\bold B||_v
∣∣A+B∣∣v=∣∣x∣∣v=0max∣∣x∣∣∣∣(A+B)x∣∣=∣∣x∣∣v=0max∣∣x∣∣∣∣Ax+Bx∣∣ ≤∣∣x∣∣v=0max∣∣x∣∣∣∣Ax∣∣+∣∣x∣∣v=0max∣∣x∣∣∣∣Bx∣∣=∣∣A∣∣v+∣∣B∣∣v
(4) 由
(
∗
)
(*)
(∗) 式:
∣
∣
A
x
⃗
∣
∣
≤
∣
∣
A
∣
∣
v
⋅
∣
∣
x
⃗
∣
∣
(
称为:算子范数与向量范数的相容性条件
)
||\bold{A}\vec{x}||\le||\bold{A}||_v\cdot||\vec{x}||\qquad(称为:算子范数与向量范数的相容性条件)
∣∣Ax∣∣≤∣∣A∣∣v⋅∣∣x∣∣(称为:算子范数与向量范数的相容性条件)
则
∣
∣
A
(
B
x
⃗
)
∣
∣
≤
∣
∣
A
∣
∣
v
⋅
∣
∣
B
x
⃗
∣
∣
≤
∣
∣
A
∣
∣
v
⋅
∣
∣
B
∣
∣
v
⋅
∣
∣
x
⃗
∣
∣
||\bold{A(B}\vec{x})||\le||\bold{A}||_v\cdot||\bold{B}\vec{x}||\le||\bold{A}||_v\cdot||\bold{B}||_v\cdot||\vec{x}||
∣∣A(Bx)∣∣≤∣∣A∣∣v⋅∣∣Bx∣∣≤∣∣A∣∣v⋅∣∣B∣∣v⋅∣∣x∣∣
当
x
⃗
≠
0
\vec{x}\ne0
x=0 时,对任意
x
⃗
\vec{x}
x 均有:
∣
∣
A
B
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
≤
∣
∣
A
∣
∣
v
⋅
∣
∣
B
∣
∣
v
\frac{||\bold{AB}\vec{x}||}{||\vec{x}||}\le||\bold{A}||_v\cdot||\bold{B}||_v
∣∣x∣∣∣∣ABx∣∣≤∣∣A∣∣v⋅∣∣B∣∣v
成立,故
∣
∣
A
B
∣
∣
v
=
max
∣
∣
x
⃗
∣
∣
≠
0
∣
∣
A
B
x
⃗
∣
∣
∣
∣
x
⃗
∣
∣
≤
∣
∣
A
∣
∣
v
⋅
∣
∣
B
∣
∣
v
(
证毕
)
||\bold{AB}||_v=\max_{||\vec{x}||\ne0}\frac{||\bold{AB}\vec{x}||}{||\vec{x}||}\le||\bold{A}||_v\cdot||\bold{B}||_v\qquad(证毕)
∣∣AB∣∣v=∣∣x∣∣=0max∣∣x∣∣∣∣ABx∣∣≤∣∣A∣∣v⋅∣∣B∣∣v(证毕)
依据算子范数的定义可以得到从属于
∣
∣
x
⃗
∣
∣
1
||\vec{x}||_1
∣∣x∣∣1、
∣
∣
x
⃗
∣
∣
2
||\vec{x}||_2
∣∣x∣∣2、
∣
∣
x
⃗
∣
∣
∞
||\vec{x}||_{\infty}
∣∣x∣∣∞的矩阵
A
m
×
n
\bold A_{m\times n}
Am×n的算子范数:
(
1
)
∣
∣
A
∣
∣
1
=
max
∣
∣
x
⃗
∣
∣
≠
0
∣
∣
A
x
⃗
∣
∣
1
∣
∣
x
⃗
∣
∣
1
=
max
j
(
∑
i
=
1
m
∣
a
i
j
∣
)
(列范数)
(
2
)
∣
∣
A
∣
∣
∞
=
max
∣
∣
x
⃗
∣
∣
≠
0
∣
∣
A
x
⃗
∣
∣
∞
∣
∣
x
⃗
∣
∣
∞
=
max
i
(
∑
j
=
1
n
∣
a
i
j
∣
)
(行范数)
(
3
)
∣
∣
A
∣
∣
2
=
max
∣
∣
x
⃗
∣
∣
≠
0
∣
∣
A
x
⃗
∣
∣
2
∣
∣
x
⃗
∣
∣
2
=
λ
m
a
x
(
A
T
A
)
(
2
−
范数,
λ
m
a
x
(
A
T
A
)
表示
A
T
A
的最大特征值)
\begin{aligned} &(1)\quad||\bold A||_1=\max_{||\vec{x}||\ne0}\frac{||\bold{A}\vec{x}||_1}{||\vec{x}||_1}=\max_{j}\left(\sum_{i=1}^m|a_{ij}|\right) (列范数)\\\\ &(2)\quad||\bold A||_{\infty}=\max_{||\vec{x}||\ne0}\frac{||\bold{A}\vec{x}||_{\infty}}{||\vec{x}||_{\infty}}=\max_{i}\left(\sum_{j=1}^n|a_{ij}|\right) (行范数)\\\\ &(3)\quad||\bold A||_2=\max_{||\vec{x}||\ne0}\frac{||\bold{A}\vec{x}||_2}{||\vec{x}||_2}=\sqrt{\lambda_{max}(\bold{A^TA})}(2-范数,\lambda_{max}(\bold{A^TA})表示\bold{A^TA}的最大特征值) \end{aligned}
(1)∣∣A∣∣1=∣∣x∣∣=0max∣∣x∣∣1∣∣Ax∣∣1=jmax(i=1∑m∣aij∣)(列范数)(2)∣∣A∣∣∞=∣∣x∣∣=0max∣∣x∣∣∞∣∣Ax∣∣∞=imax(j=1∑n∣aij∣)(行范数)(3)∣∣A∣∣2=∣∣x∣∣=0max∣∣x∣∣2∣∣Ax∣∣2=λmax(ATA)(2−范数,λmax(ATA)表示ATA的最大特征值)
证明:
(1) 由于
∣
∣
A
x
⃗
∣
∣
1
=
∑
i
=
1
m
∣
a
i
1
x
1
+
a
i
2
x
2
+
⋯
+
a
i
n
x
n
∣
≤
∑
i
=
1
m
(
∣
a
i
1
∣
∣
x
1
∣
+
∣
a
i
2
∣
∣
x
2
∣
+
⋯
+
∣
a
i
n
∣
∣
x
n
∣
)
=
∑
i
=
1
m
∣
a
i
1
∣
∣
x
1
∣
+
⋯
+
∑
i
=
1
m
∣
a
i
n
∣
∣
x
n
∣
≤
max
j
(
∑
i
=
1
m
∣
a
i
j
∣
)
(
∣
x
1
∣
+
∣
x
2
∣
+
⋯
+
∣
x
n
∣
)
\begin{aligned} &||\bold{A}\vec{x}||_1=\sum_{i=1}^m|a_{i1}x_1+a_{i2}x_2+\dots+a_{in}x_n|\\\\ &\qquad\quad\le\sum_{i=1}^m(|a_{i1}||x_1|+|a_{i2}||x_2|+\dots+|a_{in}||x_n|)\\\\ &\qquad\quad=\sum_{i=1}^m|a_{i1}||x_1|+\dots+\sum_{i=1}^m|a_{in}||x_n|\\\\ &\qquad\quad\le\max_{j}\left(\sum_{i=1}^m|a_{ij}|\right)(|x_1|+|x_2|+\dots+|x_n|) \end{aligned}
∣∣Ax∣∣1=i=1∑m∣ai1x1+ai2x2+⋯+ainxn∣≤i=1∑m(∣ai1∣∣x1∣+∣ai2∣∣x2∣+⋯+∣ain∣∣xn∣)=i=1∑m∣ai1∣∣x1∣+⋯+i=1∑m∣ain∣∣xn∣≤jmax(i=1∑m∣aij∣)(∣x1∣+∣x2∣+⋯+∣xn∣)
那么,
∀
x
⃗
≠
0
,
∣
∣
A
x
⃗
∣
∣
1
∣
∣
x
⃗
∣
∣
1
≤
max
j
(
∑
i
=
1
m
∣
a
i
j
∣
)
\forall \vec{x}\ne0,\frac{||\bold{A}\vec{x}||_1}{||\vec{x}||_1}\le\max_{j}\left(\sum_{i=1}^m|a_{ij}|\right)
∀x=0,∣∣x∣∣1∣∣Ax∣∣1≤jmax(i=1∑m∣aij∣)
设
A
\bold A
A 第
k
k
k 列的元素绝对值之和最大,并取
x
⃗
0
=
[
0
,
…
,
0
,
1
k
,
0
,
…
,
0
]
\vec{x}_0=[0,\dots,0,\underset{k}1,0,\dots,0]
x0=[0,…,0,k1,0,…,0], 则有:
max
j
(
∑
i
=
1
m
∣
a
i
j
∣
)
=
∑
i
=
1
m
∣
a
i
k
∣
=
∣
∣
A
x
⃗
0
∣
∣
1
,
∣
∣
x
⃗
0
∣
∣
∞
=
1
\max_{j}\left(\sum_{i=1}^m|a_{ij}|\right)=\sum_{i=1}^m|a_{ik}|=||\bold A\vec{x}_0||_1,||\vec{x}_0||_{\infty}=1
jmax(i=1∑m∣aij∣)=i=1∑m∣aik∣=∣∣Ax0∣∣1,∣∣x0∣∣∞=1
这说明:
max
∣
∣
x
⃗
∣
∣
≠
0
(
∣
∣
A
x
⃗
∣
∣
1
∣
∣
x
⃗
∣
∣
1
)
=
max
j
(
∑
i
=
1
m
∣
a
i
j
∣
)
(
证毕
)
\max_{||\vec{x}||\ne0}\left(\frac{||\bold{A}\vec{x}||_1}{||\vec{x}||_1}\right)=\max_{j}\left(\sum_{i=1}^m|a_{ij}|\right)\quad(证毕)
∣∣x∣∣=0max(∣∣x∣∣1∣∣Ax∣∣1)=jmax(i=1∑m∣aij∣)(证毕)
(2) 由于
∣
∣
A
x
⃗
∣
∣
∞
=
max
1
≤
i
≤
m
∣
a
i
1
x
1
+
a
i
2
x
2
+
⋯
+
a
i
n
x
n
∣
≤
max
1
≤
i
≤
m
(
∣
a
i
1
∣
∣
x
1
∣
+
∣
a
i
2
∣
∣
x
2
∣
+
⋯
+
∣
a
i
n
∣
∣
x
n
∣
)
≤
max
1
≤
i
≤
m
(
∣
a
i
1
∣
+
∣
a
i
2
∣
+
⋯
+
∣
a
i
n
∣
)
⋅
∣
∣
x
⃗
∣
∣
∞
=
max
i
(
∑
j
=
1
n
∣
a
i
j
∣
)
⋅
∣
∣
x
⃗
∣
∣
∞
\begin{aligned} &||\bold{A}\vec{x}||_{\infty}=\max_{1\le i\le m}|a_{i1}x_1+a_{i2}x_2+\dots+a_{in}x_n|\\\\ &\qquad\quad\le\max_{1\le i\le m}(|a_{i1}||x_1|+|a_{i2}||x_2|+\dots+|a_{in}||x_n|)\\\\ &\qquad\quad\le\max_{1\le i\le m}(|a_{i1}|+|a_{i2}|+\dots+|a_{in}|)\cdot||\vec{x}||_{\infty}\\\\ &\qquad\quad=\max_{i}\left(\sum_{j=1}^n|a_{ij}|\right)\cdot||\vec{x}||_{\infty} \end{aligned}
∣∣Ax∣∣∞=1≤i≤mmax∣ai1x1+ai2x2+⋯+ainxn∣≤1≤i≤mmax(∣ai1∣∣x1∣+∣ai2∣∣x2∣+⋯+∣ain∣∣xn∣)≤1≤i≤mmax(∣ai1∣+∣ai2∣+⋯+∣ain∣)⋅∣∣x∣∣∞=imax(j=1∑n∣aij∣)⋅∣∣x∣∣∞
故,
∀
x
⃗
≠
0
,
∣
∣
A
x
⃗
∣
∣
∞
∣
∣
x
⃗
∣
∣
∞
≤
max
i
(
∑
j
=
1
n
∣
a
i
j
∣
)
\forall \vec{x}\ne0,\frac{||\bold{A}\vec{x}||_{\infty}}{||\vec{x}||_{\infty}}\le\max_{i}\left(\sum_{j=1}^n|a_{ij}|\right)
∀x=0,∣∣x∣∣∞∣∣Ax∣∣∞≤imax(j=1∑n∣aij∣)
设
A
\bold A
A 第
k
k
k 行的元素绝对值之和最大,并取
x
⃗
0
=
[
s
g
n
(
x
1
)
,
s
g
n
(
x
2
)
,
…
,
s
g
n
(
x
n
)
]
\vec{x}_0=[sgn(x_1),sgn(x_2),\dots,sgn(x_n)]
x0=[sgn(x1),sgn(x2),…,sgn(xn)], 则有:
max
i
(
∑
j
=
1
n
∣
a
i
j
∣
)
=
∣
∣
A
x
⃗
0
∣
∣
∞
,
∣
∣
x
⃗
0
∣
∣
∞
=
1
\max_{i}\left(\sum_{j=1}^n|a_{ij}|\right)=||\bold A\vec{x}_0||_{\infty},||\vec{x}_0||_{\infty}=1
imax(j=1∑n∣aij∣)=∣∣Ax0∣∣∞,∣∣x0∣∣∞=1
这说明:
max
∣
∣
x
⃗
∣
∣
≠
0
(
∣
∣
A
x
⃗
∣
∣
∞
∣
∣
x
⃗
∣
∣
∞
)
=
max
i
(
∑
j
=
1
n
∣
a
i
j
∣
)
(
证毕
)
\max_{||\vec{x}||\ne0}\left(\frac{||\bold{A}\vec{x}||_{\infty}}{||\vec{x}||_{\infty}}\right)=\max_{i}\left(\sum_{j=1}^n|a_{ij}|\right)\quad(证毕)
∣∣x∣∣=0max(∣∣x∣∣∞∣∣Ax∣∣∞)=imax(j=1∑n∣aij∣)(证毕)
(3) 由于矩阵
A
T
A
\bold{A^TA}
ATA 满足:
{
(
A
T
A
)
T
=
A
T
A
x
⃗
T
A
T
A
x
⃗
=
(
A
x
⃗
,
A
x
⃗
)
≥
0
\begin{cases} (\bold{A}^T\bold{A})^T=\bold{A}^T\bold{A}\\\\ \vec{x}^T\bold{A}^T\bold{A}\vec{x}=(\bold{A}\vec{x},\bold{A}\vec{x})\ge0 \end{cases}
⎩
⎨
⎧(ATA)T=ATAxTATAx=(Ax,Ax)≥0
故矩阵
A
T
A
\bold{A^TA}
ATA 为对称半正定矩阵,设其有特征值:
λ
1
≥
λ
2
⋯
≥
λ
n
≥
0
\lambda_1\ge\lambda_2\dots\ge\lambda_n\ge0
λ1≥λ2⋯≥λn≥0
分别对应有单位特征向量
u
⃗
i
(
i
=
1
,
2
,
…
,
n
)
\vec{u}_i\ (i=1,2,\dots,n)
ui (i=1,2,…,n),且满足
u
⃗
i
⋅
u
⃗
j
=
δ
i
j
\vec{u}_i\cdot\vec{u}_j=\delta_{ij}
ui⋅uj=δij
对于任意
x
⃗
=
∑
i
=
1
n
c
i
u
⃗
i
≠
0
\vec{x}=\sum\limits_{i=1}^nc_i\vec{u}_i\ne0
x=i=1∑nciui=0 有:
∣
∣
A
x
⃗
∣
∣
2
∣
∣
x
⃗
∣
∣
2
=
(
x
⃗
,
A
T
A
x
⃗
)
(
x
⃗
,
x
⃗
)
=
∑
i
=
1
n
c
i
2
λ
i
∑
i
=
1
n
c
i
2
≤
λ
1
\frac{||\bold{A}\vec{x}||_2}{||\vec{x}||_2}=\frac{(\vec{x},\bold{A^TA}\vec{x})}{(\vec{x},\vec{x})}=\sqrt{\frac{\sum\limits_{i=1}^nc_i^2\lambda_i}{\sum\limits_{i=1}^nc_i^2}}\le\sqrt{\lambda_1}
∣∣x∣∣2∣∣Ax∣∣2=(x,x)(x,ATAx)=i=1∑nci2i=1∑nci2λi≤λ1
取
x
⃗
0
=
u
⃗
1
\vec{x}_0=\vec{u}_1
x0=u1 则有:
∣
∣
A
x
⃗
0
∣
∣
2
∣
∣
x
⃗
0
∣
∣
2
=
λ
1
\frac{||\bold{A}\vec{x}_0||_2}{||\vec{x}_0||_2}=\sqrt{\lambda_1}
∣∣x0∣∣2∣∣Ax0∣∣2=λ1
说明:
max
∣
∣
x
⃗
∣
∣
≠
0
∣
∣
A
x
⃗
∣
∣
2
∣
∣
x
⃗
∣
∣
2
=
λ
1
(
证毕
)
\max_{||\vec{x}||\ne0}\frac{||\bold{A}\vec{x}||_2}{||\vec{x}||_2}=\sqrt{\lambda_1}\quad(证毕)
∣∣x∣∣=0max∣∣x∣∣2∣∣Ax∣∣2=λ1(证毕)
定理 若
∣
∣
B
∣
∣
v
<
1
||\bold B||_v<1
∣∣B∣∣v<1 则
E
±
B
\bold{E\pm B}
E±B 为可逆矩阵,且
∣
∣
E
±
B
−
1
∣
∣
v
≤
1
1
−
∣
∣
B
∣
∣
v
||\bold{E\pm B}^{-1}||_v\le\frac{1}{1-||\bold B||_v}
∣∣E±B−1∣∣v≤1−∣∣B∣∣v1
证明:若
E
±
B
\bold{E\pm B}
E±B 为不可逆,则
(
E
±
B
)
x
⃗
=
0
(\bold{E\pm B})\vec{x}=0
(E±B)x=0
存在非零解,即存在
x
⃗
0
≠
0
\vec{x}_0\ne0
x0=0使得
B
x
⃗
0
=
∓
x
⃗
0
⟹
∣
∣
B
∣
∣
v
=
∣
∣
B
x
⃗
0
∣
∣
∣
∣
x
⃗
0
∣
∣
=
1
(
矛盾
)
\bold{B}\vec{x}_0=\mp\vec{x}_0\Longrightarrow||\bold B||_v=\frac{||\bold{B}\vec{x}_0||}{||\vec{x}_0||}=1\quad(矛盾)
Bx0=∓x0⟹∣∣B∣∣v=∣∣x0∣∣∣∣Bx0∣∣=1(矛盾)
又由于
(
E
±
B
)
−
1
(
E
±
B
)
=
E
⟹
(
E
±
B
)
−
1
=
E
∓
B
(
E
±
B
)
−
1
(\bold{E\pm B})^{-1}(\bold{E\pm B})=\bold{E}\Longrightarrow(\bold{E\pm B})^{-1}=\bold{E}\mp\bold{B(E\pm B)^{-1}}
(E±B)−1(E±B)=E⟹(E±B)−1=E∓B(E±B)−1
故
∣
∣
(
E
±
B
)
−
1
∣
∣
v
≤
∣
∣
E
∣
∣
v
+
∣
∣
B
∣
∣
v
⋅
∣
∣
(
E
±
B
)
−
1
∣
∣
v
=
1
+
∣
∣
B
∣
∣
v
⋅
∣
∣
(
E
±
B
)
−
1
∣
∣
v
||(\bold{E\pm B})^{-1}||_v\le||\bold{E}||_v+||\bold{B}||_v\cdot||\bold{(E\pm B)^{-1}}||_v=1+||\bold{B}||_v\cdot||\bold{(E\pm B)^{-1}}||_v
∣∣(E±B)−1∣∣v≤∣∣E∣∣v+∣∣B∣∣v⋅∣∣(E±B)−1∣∣v=1+∣∣B∣∣v⋅∣∣(E±B)−1∣∣v
即
∣
∣
(
E
±
B
)
−
1
∣
∣
v
≤
1
1
−
∣
∣
B
∣
∣
v
(
证毕
)
||(\bold{E\pm B})^{-1}||_v\le\frac{1}{1-||\bold B||_v}\quad(证毕)
∣∣(E±B)−1∣∣v≤1−∣∣B∣∣v1(证毕)
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)