Intel RealSense D435i Calibration
Intel RealSense D435i Calibration0.引言1.标定工具安装1.1.imu_utils Install1.2.kalibr Install2.IMU标定3.相机标定4.IMU+相机联合标定5.VINS Yaml文件配置0.引言ref0.官方校准白皮书ref1.blogref2.blog. realsense d435i包含两个红外相机、红外发射器、R...
Intel RealSense D435i Calibration
0.引言
. realsense d435i包含两个红外相机、红外发射器、RGB相机和IMU四个模块,显然四个传感器的空间位置是不同的,我们在处理图像和IMU数据时需要将这些数据都放在统一的坐标系上去。比如我们用d435i运行vins,处理的图像和IMU数据都需要放在同一个坐标系下,因此需要标定IMU相对RGB相机的空间位置(包括旋转和位移)。
另外,相机固有参数比如焦距、畸变参数等以及IMU的零偏和scale系数等都需要提前知道。前者称为外参,后者称为内参,在运行程序前我们需要标定它们,不论程序是否有自标定功能,毕竟好的初始标定值对于自标定来说也是有利的。
1.标定工具安装
- 安装realsense-sdk2.0,包括d435i的驱动等,直到可以运行realsense-viewer,可以看到图像和深度图。
- 安装realsense-ros,前提要安装ros-kinetic,这个包可以直接读取d435i的数据流,并发布各个topic,后面标定操作直接订阅相关的topic。
- 安装imu_utils,前提要安装code_utils,这个用于标定IMU的噪音密度和随机游走系数。
- 安装Kalibr。这个软件包可以同时标定多个相机的外参和内参(提供不同的相机的模型),另外可以标定相机和IMU的外参。
1.1.imu_utils Install
参照官网安装即可。
1.2.kalibr Install
- ref1.Kalibr 之 Camera-IMU 标定
- ref2.使用Kalibr标定单目+IMU
- ref3.相机+imu标定
- ref4.kalibr教程
- ref5.Kalibr标定d435i
- ref6.Kalibr标定camera-IMU详细步骤
标定顺序:IMU标定 -> 相机标定 -> IMU+相机联合标定. 这么设定顺序是因为最后一步IMU和相机的联合标定需要IMU和相机的内参,现在开始展开说明。
2.IMU标定
- step1:进入realsense-ros包,开启d435i,发布IMU数据。也可以直接在rs_camera.launch基础上进行更改。
roslaunch realsense2_camera rs_imu_calibration.launch
rs_imu_calibration.launch是在rs_camera.launch基础上针对IMU校准做了修改。目的是将acc、gyro数据对齐使用同一个topic发布。
Modified:
<!-- 更改前原版本arg name="unite_imu_method" default=""/-->
<arg name="unite_imu_method" default="linear_interpolation"/>
<!--或着将参数改为copy-->
<arg name="unite_imu_method" default="copy"/>
- step2: 录制imu数据包
rosbag record -O imu_calibration /camera/imu
- step3: 运行校准程序
根据imu_utils
文件夹里面的A3.launch
改写D435i标定启动文件:d435i_imu_calibration.launch
注意,记得修改max_time_min
对应的参数,默认是120,意味着两个小时,如果ros包里的imu数据长度没有两个小时,就进行不下去,始终停留在wait for imu data这里。后面录制的时候不知道为什么自己停了,只录制了大约一个小时,所以实际数据时间参数填写的50.
d435i_imu_calibration.launch:
<launch>
<node pkg="imu_utils" type="imu_an" name="imu_an" output="screen">
<!--TOPIC名称和上面一致-->
<param name="imu_topic" type="string" value= "/camera/imu"/>
<!--imu_name 无所谓-->
<param name="imu_name" type="string" value= "d435i"/>
<!--标定结果存放路径-->
<param name="data_save_path" type="string" value= "$(find imu_utils)/data/"/>
<!--数据录制时间-min-->
<param name="max_time_min" type="int" value= "120"/>
<!--采样频率,即是IMU频率,采样频率可以使用rostopic hz /camera/imu查看,设置为200,为后面的rosbag play播放频率-->
<param name="max_cluster" type="int" value= "200"/>
</node>
</launch>
执行校准启动文件
roslaunch imu_utils d435i_imu_calibration.launch
- step4: 回放数据包
rosbag play -r 200 imu_calibration.bag #以200倍速度进行播放,因为IMU数据录制时间很长,如果就按照默认速度播放会播放过很久!
标定结果imu_utils/data/d435i_imu_param.yaml
%YAML:1.0
---
type: IMU
name: d435i
Gyr:
unit: " rad/s"
avg-axis: #取平均值作为标定结果
gyr_n: 2.1732068912927271e-03 #白噪声
gyr_w: 1.7797900203083191e-05 #偏置
x-axis:
gyr_n: 2.1391701666780305e-03
gyr_w: 1.9895954849984289e-05
y-axis:
gyr_n: 2.5929821451625827e-03
gyr_w: 1.9897115334756576e-05
z-axis:
gyr_n: 1.7874683620375685e-03
gyr_w: 1.3600630424508712e-05
Acc:
unit: " m/s^2"
avg-axis: #取平均值作为标定结果
acc_n: 2.3786845794688424e-02 #白噪声
acc_w: 5.9166889270489845e-04 #偏置
x-axis:
acc_n: 2.1534587157119929e-02
acc_w: 6.2088900106164286e-04
y-axis:
acc_n: 2.2044805094743814e-02
acc_w: 6.2033852597901415e-04
z-axis:
acc_n: 2.7781145132201524e-02
acc_w: 5.3377915107403855e-04
终端输出信息:
[ INFO] [1583551991.407318058]: Loaded imu_topic: /camera/imu
[ INFO] [1583551991.409118658]: Loaded imu_name: d435i
[ INFO] [1583551991.410842690]: Loaded data_save_path: /home/ipsg/D435I/imu_utils/src/imu_utils/data/
[ INFO] [1583551991.412641903]: Loaded max_time_min: 60
[ INFO] [1583551991.414503358]: Loaded max_cluster: 200
gyr x num of Cluster 200
gyr y num of Cluster 200
gyr z num of Cluster 200
acc x num of Cluster 200
acc y num of Cluster 200
acc z num of Cluster 200
wait for imu data.
gyr x numData 1379952
gyr x start_t 1.58355e+09
gyr x end_t 1.58355e+09
gyr x dt
-------------3600.83 s
-------------60.0138 min
-------------1.00023 h
gyr x freq 383.231
gyr x period 0.00260939
gyr y numData 1379952
gyr y start_t 1.58355e+09
gyr y end_t 1.58355e+09
gyr y dt
-------------3600.83 s
-------------60.0138 min
-------------1.00023 h
gyr y freq 383.231
gyr y period 0.00260939
gyr z numData 1379952
gyr z start_t 1.58355e+09
gyr z end_t 1.58355e+09
gyr z dt
-------------3600.83 s
-------------60.0138 min
-------------1.00023 h
gyr z freq 383.231
gyr z period 0.00260939
Gyro X
C -1.06724 30.4679 -8.79353 1.24469 -0.0272342
Bias Instability 2.04796e-05 rad/s
Bias Instability 1.9896e-05 rad/s, at 110.646 s
White Noise 7.64079 rad/s
White Noise 0.00213917 rad/s
bias -0.147923 degree/s
-------------------
Gyro y
C -1.50544 38.3445 -8.85277 1.13221 -0.0212569
Bias Instability 1.41036e-05 rad/s
Bias Instability 1.98971e-05 rad/s, at 110.646 s
White Noise 9.31086 rad/s
White Noise 0.00259298 rad/s
bias 0.01896 degree/s
-------------------
Gyro z
C -0.866715 24.625 -5.52922 0.72493 -0.0121455
Bias Instability 6.32623e-06 rad/s
Bias Instability 1.36006e-05 rad/s, at 96.9284 s
White Noise 6.42775 rad/s
White Noise 0.00178747 rad/s
bias -0.0351278 degree/s
-------------------
==============================================
==============================================
acc x numData 1379952
acc x start_t 1.58355e+09
acc x end_t 1.58355e+09
acc x dt
-------------3600.83 s
-------------60.0138 min
-------------1.00023 h
acc x freq 383.231
acc x period 0.00260939
acc y numData 1379952
acc y start_t 1.58355e+09
acc y end_t 1.58355e+09
acc y dt
-------------3600.83 s
-------------60.0138 min
-------------1.00023 h
acc y freq 383.231
acc y period 0.00260939
acc z numData 1379952
acc z start_t 1.58355e+09
acc z end_t 1.58355e+09
acc z dt
-------------3600.83 s
-------------60.0138 min
-------------1.00023 h
acc z freq 383.231
acc z period 0.00260939
acc X
C -3.05601e-05 0.00142723 -0.000646156 0.000264777 -1.39214e-06
Bias Instability 0.000620889 m/s^2
White Noise 0.0215346 m/s^2
-------------------
acc y
C -3.20282e-05 0.00142617 -0.000709606 0.00030218 -3.36171e-06
Bias Instability 0.000620339 m/s^2
White Noise 0.0220448 m/s^2
-------------------
acc z
C -1.2485e-05 0.00135554 0.000129763 -1.62121e-05 3.7871e-06
Bias Instability 0.000533779 m/s^2
White Noise 0.0277811 m/s^2
-------------------
[imu_an-2] process has finished cleanly
当然也可以不用录制和回放直接在线标定,也即是1和3步即可。经过这些标定会生成一个yaml文件和很多txt文件,主要是yaml文件,给出了加速度计和陀螺仪三轴的noise_density和random_walk,同时计算出了平均值,后面IMU+摄像头联合标定的时候需要这些均值。
通过官方指令查看默认imu与相机参数(acc、gyro分开的):
rostopic echo /camera/gyro/imu_info
rostopic echo /camera/accel/imu_info
rostopic echo /camera/color/camera_info #相机参数
可以看出,实际上出厂没有标定IMU?相机出厂内参:
height: 480
width: 640
distortion_model: "plumb_bob"
D: [0.0, 0.0, 0.0, 0.0, 0.0]
K: [616.1290893554688, 0.0, 319.9371032714844, 0.0, 616.3303833007812, 240.64352416992188, 0.0, 0.0, 1.0]
R: [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
P: [616.1290893554688, 0.0, 319.9371032714844, 0.0, 0.0, 616.3303833007812, 240.64352416992188, 0.0, 0.0, 0.0, 1.0, 0.0]
绘制Allan曲线:
3.相机标定
使用Kalibr标定相机的内参和多个相机相对位置关系即外参,需要准备kalibr提供的标定物,具体可以在kalibr-wiki目录中找到Calibration Target ,然后找到april grid下载,那里面提供了标定目标的图案和相应的参数。你也可以定做不同大小的标定目标。具体标定步骤:
- step 0: 安装kalibr。使用kalibr自带的标定物生成脚本生成自己想要尺寸的aprilgrid,将其pdf文件放在电脑屏幕上按照真实尺寸显示,这样免去了打印的麻烦,而且因为目标是在绝对的水平面上,不会引入额外的标定误差.
kalibr_create_target_pdf --type apriltag --nx 6 --ny 6 --tsize 0.02 --tspace 0.28571429
#kalibr_create_target_pdf --type apriltag --nx [NUM_COLS] --ny [NUM_ROWS] --tsize [TAG_WIDTH_M] --tspace [TAG_SPACING_PERCENT]
yaml文件需要按照设定的尺寸进行修改.过程中报错:ImportError: No module named pyx
,solve method.
yaml文件修改举例:
target_type: 'aprilgrid' #gridtype
tagCols: 6 #number of apriltags
tagRows: 6 #number of apriltags
tagSize: 0.02 #size of apriltag, edge to edge [m]
tagSpacing: 0.28571429 #ratio of space between tags to tagSize
- step 1:进入realsense-ros包,开启d435i,发布摄像头图像的话题
roslaunch realsense2_camera rs_camera.launch
注意:d453i是有红外发射器的,可以发射很多红外小斑点,如果打开你会在rviz看到很多光斑,可能不利于标定,所以标定时关闭这个发射器的。关闭发射器:在realsense-viewer里面设置后,设置的参数使用ROS Wrapper打开后依然生效!!这一点在后面的使用中也十分有用,比如设置滤波器等等.
- step2:将标定目标AprilGrid置于相机前方合理距离范围内,然后缓慢移动标定目标,让所有摄像头均能看到标定物
一定不要太远,不然无法检测到标定目标的特征,在标定算法中需要检测是否有足够数量图片检测到标定特征,否则直接无法标定。移动标定物时候不要过快导致运动模糊,我们只需要获取不同位置和角度的图像,确保图像清晰和特征完整即可。另外要尽可能多角度和多位置(上下左右等)甚至到摄像头捕捉图像的边缘,这样移动目标1min左右即可。
- step3:降低图像话题的频率,录制图像数据包
kalibr在处理标定数据的时候要求图像的频率不可过高,一般为4hz(后面计算过程报错,改为20)。使用如下指令来限制图像频率:
rosrun topic_tools throttle messages /camera/color/image_raw 20 /color
rosrun topic_tools throttle messages /camera/infra2/image_rect_raw 20 /infra_left
rosrun topic_tools throttle messages /camera/infra1/image_rect_raw 20 /infra_right
然后进行录制(录制了两分钟):
rosbag record -O multicameras_calibration /infra_left /infra_right /color
- step4:调用kalibr的算法计算各个摄像头的内参和外参
kalibr_calibrate_cameras --target ../yaml/april_6x6_A4.yaml --bag ./bag/0_multicameras_calibration.bag --models pinhole-equi pinhole-equi pinhole-equi --topics /infra_left /infra_right /color --bag-from-to 10 100
or checkboard
kalibr_calibrate_cameras --target checkerboard_8x11_30x30cm.yaml --bag ./bag/0_multicameras_calibration.bag --models pinhole-equi pinhole-equi omni-radtan omni-radtan --topics /cam0/image_raw /cam1/image_raw /cam2/image_raw /cam3/image_raw
命令说明:
april_6x6_A4.yaml – 标定物的参数,具体是标定目标的尺寸之类,因为我是缩小打印在A4上,所以要对参数进行修改;pinhole-equi – 选择的相机模型,kalibr提供了很多相机模型,可以自己选择. --bag-from-to
可以选择时间段,毕竟录制的时候不能保证整体都录制的很好。这个计算的结果会很久,是真的很久,最后会输出一个pdf和txt文件,有内外参数据。
只标定主相机:
kalibr_calibrate_cameras --target ../yaml/april_6x6_A4.yaml --bag ./bag/0_multicameras_calibration.bag --model pinhole-equi --topic /color --show-extraction --approx-sync 0.04
最后还是标定的多相机:
kalibr_calibrate_cameras --target april_6x6_A4.yaml --bag multicameras_calibration.bag --models pinhole-equi pinhole-equi pinhole-equi --topics /infra_left /infra_right /color --show-extraction --approx-sync 0.04 --bag-from-to 10 100
# --bag-from-to 10 100 选取10到100s之间的数据
期间遇到的报错:
(1).err1.ImportError: cannot import name NavigationToolbar2Wx
,solve method.不需要重新编译。
(2).err2
Cameras are not connected through mutual observations, please check the dataset. Maybe adjust the approx. sync. tolerance.
Traceback (most recent call last):
File "/home/ipsg/D435I/kalibr_ws/devel/bin/kalibr_calibrate_cameras", line 15, in <module>
exec(compile(fh.read(), python_script, 'exec'), context)
File "/home/ipsg/D435I/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_calibrate_cameras", line 447, in <module>
main()
File "/home/ipsg/D435I/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_calibrate_cameras", line 204, in main
graph.plotGraph()
File "/home/ipsg/D435I/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_camera_calibration/MulticamGraph.py", line 311, in plotGraph
edge_label=self.G.es["weight"],
KeyError: 'Attribute does not exist'
报告生成:
(1).PDF
(2).TXT
Calibration results
====================
Camera-system parameters:
cam0 (/infra_left):
type: <class 'aslam_cv.libaslam_cv_python.EquidistantDistortedPinholeCameraGeometry'>
distortion: [ 0.40059551 -0.73828444 4.12512287 -6.18517722] +- [ 0.0096611 0.06314745 0.09801433 0.08414741]
projection: [ 386.71250573 387.18240561 320.55905537 239.8204248 ] +- [ 0.14888357 0.16540833 0.34725177 0.27395728]
reprojection error: [-0.000012, -0.000007] +- [0.148506, 0.106890]
cam1 (/infra_right):
type: <class 'aslam_cv.libaslam_cv_python.EquidistantDistortedPinholeCameraGeometry'>
distortion: [ 0.36572062 -0.38257775 3.28883181 -6.72070632] +- [ 0.01450564 0.12847927 0.29582794 0.15893508]
projection: [ 386.94988374 387.35006645 321.07250734 240.44316048] +- [ 0.13223764 0.16242541 0.3057414 0.26940346]
reprojection error: [0.000004, -0.000005] +- [0.164897, 0.108821]
cam2 (/color):
type: <class 'aslam_cv.libaslam_cv_python.EquidistantDistortedPinholeCameraGeometry'>
distortion: [ 0.24904226 2.8043341 -15.57145308 26.7679881 ] +- [ 0.0099252 0.09318402 0.2472954 0.11722548]
projection: [ 611.67156667 611.71826379 323.28627384 240.57596379] +- [ 0.10541019 0.13846652 0.29617104 0.23250236]
reprojection error: [0.000003, -0.000001] +- [0.207269, 0.167030]
baseline T_1_0:
q: [-0.00053684 0.00066745 0.00003144 0.99999963] +- [ 0.00122298 0.00096443 0.00015755]
t: [ 0.04996444 0.00001392 0.0000511 ] +- [ 0.00013475 0.00012981 0.00032963]
baseline T_2_1:
q: [ 0.00164081 -0.00396511 0.00180494 0.99998916] +- [ 0.00097517 0.00060299 0.00012675]
t: [ 0.01598901 -0.00016613 0.00066788] +- [ 0.00010335 0.00010625 0.00027807]
Target configuration
====================
Type: aprilgrid
Tags:
Rows: 6
Cols: 6
Size: 0.021 [m]
Spacing 0.00614285721 [m]
4.IMU+相机联合标定
在标定IMU和camera的时候可以选择多个相机和IMU一起,也可以选择一个相机,前面已将多个相机进行了标定,如果需要可以只标定主相机(作为参照坐标系的相机)与IMU的相对位置。
- step0:准备IMU和camera配置文件,将之前标定的数据按照kalibr的yaml文件准备好.
将Acc和Gyr的第一组平均数据拷贝到kalibr对应的imu.yml文件中,
rostopic: /camera/imu #由于后面要重命名topic名字,这里改为rostopic: /imu
update_rate: 200.0 #Hz
accelerometer_noise_density: 2.3786845794688424e-02 #白噪声
accelerometer_random_walk: 5.9166889270489845e-04 #偏置
gyroscope_noise_density: 2.1732068912927271e-03 #continous
gyroscope_random_walk: 1.7797900203083191e-05
从camchain-multicameras_calibration.yaml
中复制单个相机信息进行单目+IMU标定,例如\color + \imu: color_d435i.yaml
,多目+IMU就直接使用camchain-multicameras_calibration.yaml
。
cam0:
T_cn_cnm1:
- [0.9999620402124648, 0.0035968244723977626, 0.007936056188530766, 0.015989010745942417]
- [-0.0036228484455317336, 0.9999880998809918, 0.003267271879129718, -0.0001661290746026598]
- [-0.007924209945064884, -0.003295898983009658, 0.9999631712951373, 0.0006678796643165944]
- [0.0, 0.0, 0.0, 1.0]
cam_overlaps: [0, 1]
camera_model: pinhole
distortion_coeffs: [0.24904225693789128, 2.804334100694488, -15.571453079619436,
26.767988102446466]
distortion_model: equidistant
intrinsics: [611.6715666677603, 611.7182637869023, 323.2862738374678, 240.57596378988336]
resolution: [640, 480]
rostopic: /color
- step1:进入realsense-ros包,开启d435i,
rs_camera.launch
发布摄像头图像和IMU数据的话题,rs_camera.launch
需要修改.
Modified:
...
<arg name="enable_sync" default="true"/>,
...
<arg name="unite_imu_method" default="copy"/>
目的:一个是保持IMU和图像信息同步,另一个输出同步IMU数据。
- step2:固定标定目标,确保摄像头能够提取特征前提下充分调整d435i的姿势和位置,录制数据包.
具体可以参照kalibr的视频,视频中是先面对标定目标,然后俯仰、偏航和横滚三个角度分别面向目标运动,然后是前后左右和上下运动,充分运动起来。因为kalibr推荐IMU 200Hz,图像20Hz,所以用topic_tools throttle
限制频率。
注意:用topic_tools throttle
限制频率后一定要看一下限制后的topic输出频率:rostopic hz /topic
,你会发现实际的频率与设定的频率并不一致,你可能需要设置不同的数值比如:rosrun topic_tools throttle messages /topic_1 25 /topic_2
,如果topic_1是40hz,/topic_2可能不是25hz,而是20hz,具体原因不明。有知道的可以留言告知,谢谢!
切记一定要保证目标在图像中清晰可见,同时要求整个视频时间尽量短,否则后续优化耗时很久。
kalibr在处理标定数据的时候要求图像的频率不可过高,降低图像数据到20HZ,IMU数据至200HZ。。使用如下指令来限制图像频率:
rosrun topic_tools throttle messages /camera/imu 200 /imu
rosrun topic_tools throttle messages /camera/color/image_raw 20 /color
rosrun topic_tools throttle messages /camera/infra2/image_rect_raw 20 /infra_left
rosrun topic_tools throttle messages /camera/infra1/image_rect_raw 20 /infra_right
然后进行录制(录制了两分钟):
rosbag record -O camera_imu_calibration /color /imu /infra_left /infra_right #多目
rosbag record -O camera_imu_calibration /color /imu #单目
- step3:调用kalibr的算法计算IMU和camera外参
单目+IMU:
kalibr_calibrate_imu_camera --target april_6x6_A4.yaml --cam color_d435i.yaml --imu imu_d435i.yaml --bag imu_cameras_calibration.bag --bag-from-to 10 100 --max-iter 15 --show-extraction
单目+IMU,棋盘格:
kalibr_calibrate_imu_camera --target checkerboard_8x11_30x30cm.yaml --cam ./20200528calibr/color_d435i.yaml --imu ./20200528calibr/imu_d435i.yaml --bag ./0529calibr/camera_imu_calibration.bag --imu-models scale-misalignment --max-iter 15 --show-extraction
多目+IMU:
kalibr_calibrate_imu_camera --target april_6x6_A4.yaml --cam camchain-multicameras_calibration.yaml --imu imu_d435i.yaml --bag camera_imu_calibration.bag --bag-from-to 10 100 --max-iter 15 --show-extraction
注释:
--bag-from-to 10 100
选择10-100s之间的数据.
--max-iter 15
设置优化迭代次数为15次,默认30.
--show-extraction
展示特征提取情况.
多目优化时矩阵维数太大,优化失败:
标定报告:
(1).PDF
(2).TXT
Calibration results
===================
Normalized Residuals
----------------------------
Reprojection error (cam0): mean 0.309357318376, median 0.251843164322, std: 0.230997537619
Gyroscope error (imu0): mean 0.265159164537, median 0.228561532289, std: 0.176229173919
Accelerometer error (imu0): mean 0.221421363455, median 0.195499299021, std: 0.128105231257
Residuals
----------------------------
Reprojection error (cam0) [px]: mean 0.309357318376, median 0.251843164322, std: 0.230997537619
Gyroscope error (imu0) [rad/s]: mean 0.00814934517662, median 0.00702456135722, std: 0.00541618982304
Accelerometer error (imu0) [m/s^2]: mean 0.0744854379606, median 0.065765338454, std: 0.0430941897671
Transformation (cam0):
-----------------------
T_ci: (imu0 to cam0):
[[ 0.99996271 -0.00181009 0.00844446 0.02651246]
[ 0.00171691 0.9999377 0.01102943 0.00830124]
[-0.0084639 -0.01101452 0.99990352 -0.01286511]
[ 0. 0. 0. 1. ]]
T_ic: (cam0 to imu0):
[[ 0.99996271 0.00171691 -0.0084639 -0.02663461]
[-0.00181009 0.9999377 -0.01101452 -0.00839444]
[ 0.00844446 0.01102943 0.99990352 0.01254843]
[ 0. 0. 0. 1. ]]
timeshift cam0 to imu0: [s] (t_imu = t_cam + shift)
-0.0253737394755
Gravity vector in target coords: [m/s^2]
[ 0.25486723 -9.78147004 -0.65292373]
Calibration configuration
=========================
cam0
-----
Camera model: pinhole
Focal length: [611.6715666677603, 611.7182637869023]
Principal point: [323.2862738374678, 240.57596378988336]
Distortion model: equidistant
Distortion coefficients: [0.24904225693789128, 2.804334100694488, -15.571453079619436, 26.767988102446466]
Type: aprilgrid
Tags:
Rows: 6
Cols: 6
Size: 0.021 [m]
Spacing 0.00614285721 [m]
IMU configuration
=================
IMU0:
----------------------------
Model: calibrated
Update rate: 200.0
Accelerometer:
Noise density: 0.0237868457947
Noise density (discrete): 0.336396799289
Random walk: 0.000591668892705
Gyroscope:
Noise density: 0.00217320689129
Noise density (discrete): 0.0307337865951
Random walk: 1.77979002031e-05
T_i_b
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 0.]
[ 0. 0. 0. 1.]]
time offset with respect to IMU0: 0.0 [s]
kalibr多目标定与联合标定后会生成标定报告以及标定出的外参值,标定报告会直接给出相机坐标的空间位置示意图,结合标定结果和实际位置比较可以较为直观的判断结果是否可靠;另外就是看重投影误差,这个值越小越好,自己标定出来误差有点大,猜测是标定板参数不精确导致。内参数的话也可以关注一下,我使用的d435i,标定后双面的内参基本一样,不过和自带/camera_info还是有所区别的,但是不是很大。
5.VINS Yaml文件配置
realsense config update in 202005292.
%YAML:1.0
#common parameters
imu_topic: "/camera/imu"
image_topic: "/camera/color/image_raw"
output_path: "/home/fb/output/"
#camera calibration
model_type: PINHOLE
camera_name: camera
image_width: 640
image_height: 480
#TODO modify distortion
distortion_parameters:
k1: 0.10364469
k2: -0.1823355
p1: 0.002330617
p2: 0.0037446
projection_parameters:
fx: 601.226091
fy: 601.3432164
cx: 332.171979
cy: 240.5101526
# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 0 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.
# 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess.
# 2 Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
extrinsicRotation: !!opencv-matrix
rows: 3
cols: 3
dt: d
# data: [ 0.99977841, 0.00412757, 0.02064201,
# -0.00374241, 0.99981883, -0.01866291,
# -0.0207153, 0.01858152, 0.99961273 ]
data: [ 0.99998318, -0.00302186, -0.00495021,
0.00296347, 0.99992645, -0.01176032,
0.00498539, 0.01174545, 0.99991859 ]
#Translation from camera frame to imu frame, imu^T_cam
extrinsicTranslation: !!opencv-matrix
rows: 3
cols: 1
dt: d
# data: [-0.02154582, 0.00681016, 0.02740755]
data: [-0.0132516, -0.00082214, 0.01535377]
#feature traker paprameters
max_cnt: 200 # max feature number in feature tracking
min_dist: 15 # min distance between two features
freq: 10 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image
F_threshold: 1.0 # ransac threshold (pixel)
show_track: 1 # publish tracking image as topic
equalize: 0 # if image is too dark or light, trun on equalize to find enough features
fisheye: 0 # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points
#optimization parameters
max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time
max_num_iterations: 8 # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)
#imu parameters The more accurate parameters you provide, the better performance
#for handheld, wheeld
acc_n: 0.021793 # accelerometer measurement noise standard deviation. #0.2
gyr_n: 0.00215568 # gyroscope measurement noise standard deviation. #0.05
acc_w: 0.00050207 # accelerometer bias random work noise standard deviation. #0.02
gyr_w: 1.71656e-05 # gyroscope bias random work noise standard deviation. #4.0e-5
#for tracked applications
#acc_n: 0.5 # accelerometer measurement noise standard deviation. #0.2
#gyr_n: 0.01 # gyroscope measurement noise standard deviation. #0.05
#acc_w: 0.001 # accelerometer bias random work noise standard deviation. #0.02
#gyr_w: 2.0e-5 # gyroscope bias random work noise standard deviation. #4.0e-5
g_norm: 9.805 # gravity magnitude
#loop closure parameters
loop_closure: 1 # start loop closure
fast_relocalization: 1 # useful in real-time and large project
load_previous_pose_graph: 0 # load and reuse previous pose graph; load from 'pose_graph_save_path'
#pose_graph_save_path: "/home/fb/output/pose_graph/" # save and load path
pose_graph_save_path: "*****"
#unsynchronization parameters
estimate_td: 1 # online estimate time offset between camera and imu
td: -0.0237 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)
#rolling shutter parameters
rolling_shutter: 1 # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0.033 # unit: s. rolling shutter read out time per frame (from data sheet).
#visualization parameters
save_image: 1 # save image in pose graph for visualization prupose; you can close this function by setting 0
visualize_imu_forward: 0 # output imu forward propogation to achieve low latency and high frequence results
visualize_camera_size: 0.4 # size of camera marker in RVIZ
备份VINS_ws配置:
%YAML:1.0
#common parameters
imu_topic: "/camera/imu"
image_topic: "/camera/color/image_raw"
output_path: "/home/ipsg/output/"
#camera calibration
model_type: PINHOLE
camera_name: camera
image_width: 640
image_height: 480
distortion_parameters:
k1: 9.2615504465028850e-02
k2: -1.8082438825995681e-01
p1: -6.5484100374765971e-04
p2: -3.5829351558557421e-04
projection_parameters:
fx: 616.1290893554688
fy: 616.3303833007812
cx: 319.9371032714844
cy: 240.64352416992188
# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 2 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.
# 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess.
# 2 Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
extrinsicRotation: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 0.99964621, 0.01105994, 0.02418954,
-0.01088975, 0.9999151, -0.00715601,
-0.02426663, 0.00689006, 0.99968178]
#Translation from camera frame to imu frame, imu^T_cam
extrinsicTranslation: !!opencv-matrix
rows: 3
cols: 1
dt: d
data: [0.07494282, -0.01077138, -0.00641822]
#feature traker paprameters
max_cnt: 150 # max feature number in feature tracking
min_dist: 25 # min distance between two features
freq: 10 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image
F_threshold: 1.0 # ransac threshold (pixel)
show_track: 1 # publish tracking image as topic
equalize: 0 # if image is too dark or light, trun on equalize to find enough features
fisheye: 0 # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points
#optimization parameters
max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time
max_num_iterations: 8 # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)
#imu parameters The more accurate parameters you provide, the better performance
#acc_n: 0.1 # accelerometer measurement noise standard deviation. #0.2
#gyr_n: 0.01 # gyroscope measurement noise standard deviation. #0.05
#acc_w: 0.0002 # accelerometer bias random work noise standard deviation. #0.02
#gyr_w: 2.0e-5 # gyroscope bias random work noise standard deviation. #4.0e-5
#g_norm: 9.805 # gravity magnitude
acc_n: 0.2 # accelerometer measurement noise standard deviation. #0.2
gyr_n: 0.05 # gyroscope measurement noise standard deviation. #0.05
acc_w: 0.02 # accelerometer bias random work noise standard deviation. #0.02
gyr_w: 4.0e-5 # gyroscope bias random work noise standard deviation. #4.0e-5
g_norm: 9.81 # gravity magnitude
#loop closure parameters
loop_closure: 1 # start loop closure
fast_relocalization: 1 # useful in real-time and large project
load_previous_pose_graph: 0 # load and reuse previous pose graph; load from 'pose_graph_save_path'
pose_graph_save_path: "/home/tony-ws1/output/pose_graph/" # save and load path
#unsynchronization parameters
estimate_td: 1 # online estimate time offset between camera and imu
td: 0.000 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)
#rolling shutter parameters
rolling_shutter: 0 # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0 # unit: s. rolling shutter read out time per frame (from data sheet).
#visualization parameters
save_image: 1 # save image in pose graph for visualization prupose; you can close this function by setting 0
visualize_imu_forward: 0 # output imu forward propogation to achieve low latency and high frequence results
visualize_camera_size: 0.4 # size of camera marker in RVIZ
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)