pytorch锁死在dataloader(训练时卡死)
1.问题描述2.解决方案(1)Dataloader里面不用cv2.imread进行读取图片,用cv2.imread还会带来一系列的不方便,比如不能结合torchvision进行数据增强,所以最好用PIL 里面的Image.open来读图片。(并不适用本例)(2)将DataLoader 里面的参变量num_workers设置为0,但会导致数据的读取很慢,拖慢整个模型的训练。(并不适用本例)(3)如果
1.问题描述
2.解决方案
(1)Dataloader里面不用cv2.imread进行读取图片,用cv2.imread还会带来一系列的不方便,比如不能结合torchvision进行数据增强,所以最好用PIL 里面的Image.open来读图片。(并不适用本例)
(2)将DataLoader 里面的参变量num_workers设置为0,但会导致数据的读取很慢,拖慢整个模型的训练。(并不适用本例)
(3)如果用了cv2.imread,不想改代码的,那就加两条语句,来关闭Opencv的多线程:cv2.setNumThreads(0)和cv2.ocl.setUseOpenCL(False)。加了这两条语句之后,并不影响模型的训练。(并不适用本例)
(4)这种情况应该是属于pytorch多线程锁死,在github上看到有该问题,但是没有解决的。
参考建议
首先确保num_works数量低于CPU数量(如果使用Kubernetes,则设置为pod),但是设置得足够高,使数据随时可以用于下一次迭代。如果GPU在t秒内运行每个迭代,而每个dataloader worker加载/处理单个批处理需要N*t秒,那么您应该将num_workers设置为至少N,以避免GPU停滞。当然,系统中至少要有N个cpu。
不幸的是,如果Dataloader使用任何使用K个线程的库,那么生成的进程数量就会变成num_workersK = NK。这可能比计算机中的cpu数量大得多。这会使pod节流,而Dataloader会变得非常慢。这可能导致Dataloader不返回批处理每t秒,导致GPU暂停。
避免K个线程的一种方法是通过OMP_NUM_THREADS=1 MKL_NUM_THREADS=1 python train.py
调用主脚本。这就限制了每个Dataloader工作程序只能使用一个线程,从而避免了使机器不堪重负。你仍然需要有足够的num_workers来满足GPU的需要。
您还应该在_get_item__中优化您的代码,以便每个worker在较短的时间内完成其批处理。请确保worker完成批处理的时间不受从磁盘读取训练数据的时间(特别是当您从网络存储中读取数据时)或网络带宽(当您从网络磁盘读取数据时)的影响。如果您的数据集很小,并且您有足够的RAM,那么可以考虑将数据集移动到RAM(或/tmpfs)中,并从那里读取数据以进行快速访问。对于Kubernetes,您可以创建一个RAM磁盘(在Kubernetes中搜索emptyDir)。
如果你已经优化了你的_get_item__代码,并确保磁盘访问/网络访问不是罪魁祸首,但仍然会出现问题,你将需要请求更多的cpu(为了一个Kubernetes pod),或者将你的GPU移动到拥有更多cpu的机器上。
另一个选项是减少batch_size,这样每个worker要做的工作就会减少,并且可以更快地完成预处理。后一种选择在某些情况下是不可取的,因为会有空闲的GPU内存不被利用。
你也可以考虑离线做一些预处理,减轻每个worker的负担。例如,如果每个worker正在读取一个wav文件并计算音频文件的谱图,那么可以考虑离线预先计算谱图,只从工作者的磁盘中读取计算的谱图。这将减少每个worker的工作量。
你也可以考虑将dataloader里的设置pin_memory=False。
上述的方法来自here
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)