【高等数学】双元法:求解不定积分的巧妙方法
高等数学:双元法求解不定积分的总结
文章目录
双元法求解不定积分
本方法是一种新颖,基于微分公式,求解迅速的积分方法。
说明:本方法为虚调子大佬原创。本文仅作一些整理和证明。
另外,以下所有不定积分均省略常数C。
1.双元基本概念
使用双元法之前,首先需要有双元,不妨记为 x , y x,y x,y,
且满足平方差或者平方和为常数,也即: x d x ± y d y = 0 xdx\pm ydy=0 xdx±ydy=0
2.双元法的三个基本公式
本节内容的前置知识是微分的运算法则。
(1)公式1
∫ d x y = { arctan x y , 当 x d x + y d y = 0 ln ∣ x + y ∣ , 当 x d x − y d y = 0 \int \frac{dx}{y}= \left\{ \begin{aligned} &\arctan \frac{x}{y},当xdx+ydy=0\\ &\ln|x+y|,当xdx-ydy=0 \end{aligned} \right. ∫ydx=⎩ ⎨ ⎧arctanyx,当xdx+ydy=0ln∣x+y∣,当xdx−ydy=0
[证明]:
- 先证明 x d x + y d y = 0 xdx+ydy=0 xdx+ydy=0时公式成立,
考虑:
d
(
x
y
)
=
y
d
x
−
x
d
y
y
2
d(\frac{x}{y})=\frac{ydx-xdy}{y^2}
d(yx)=y2ydx−xdy
将
x
d
x
+
y
d
y
=
0
xdx+ydy=0
xdx+ydy=0变形代入得:
d
(
x
y
)
=
y
d
x
+
x
⋅
x
d
x
y
y
2
=
(
x
2
+
y
2
)
d
x
y
3
\begin{aligned} d(\frac{x}{y})&=\frac{ydx+x\cdot \frac{xdx}{y}}{y^2}\\ &=\frac{(x^2+y^2)dx}{y^3} \end{aligned}
d(yx)=y2ydx+x⋅yxdx=y3(x2+y2)dx
得到:
d
x
=
y
3
x
2
+
y
2
d
(
x
y
)
dx=\frac{y^3}{x^2+y^2} d(\frac x y)
dx=x2+y2y3d(yx)
因此:
∫
d
x
y
=
∫
y
2
x
2
+
y
2
d
(
x
y
)
=
∫
1
(
x
y
)
2
+
1
d
(
x
y
)
=
arctan
x
y
+
C
\begin{aligned} \int\frac{dx}{y}&=\int \frac{y^2}{x^2+y^2}d(\frac{x}{y})\\ &=\int \frac{1}{(\frac{x}{y})^2+1}d(\frac{x}{y})\\ &=\arctan\frac x y+C \end{aligned}
∫ydx=∫x2+y2y2d(yx)=∫(yx)2+11d(yx)=arctanyx+C
- 以下证明 x d x − y d y = 0 xdx-ydy=0 xdx−ydy=0公式成立,
考虑:
d
(
x
+
y
)
=
d
x
+
d
y
=
d
x
+
x
y
d
x
=
x
+
y
y
d
x
d(x+y)=dx+dy=dx+\frac{x}{y}dx=\frac{x+y}{y}dx
d(x+y)=dx+dy=dx+yxdx=yx+ydx
代入原式得:
∫
d
x
y
=
d
(
x
+
y
)
x
+
y
=
ln
∣
x
+
y
∣
\begin{aligned} \int\frac{dx}{y}&=\frac{d(x+y)}{x+y}\\ &=\ln|x+y| \end{aligned}
∫ydx=x+yd(x+y)=ln∣x+y∣
(2)公式2
∫ d x y 3 = 1 y 2 ± x 2 ⋅ x y \int\frac{dx}{y^3}=\frac{1}{y^2\pm x^2}\cdot\frac x y ∫y3dx=y2±x21⋅yx
式中, y 2 ± x 2 y^2\pm x^2 y2±x2即平方和或差,是常数。
[证明]:
证明 x d x + y d y = 0 xdx+ydy=0 xdx+ydy=0时成立即可,另一种情况同理可证
同上可得:
d
x
=
y
3
x
2
+
y
2
d
(
x
y
)
dx=\frac{y^3}{x^2+y^2} d(\frac x y)
dx=x2+y2y3d(yx)
因此:
∫
d
x
y
3
=
1
x
2
+
y
2
∫
d
(
y
x
)
=
1
y
2
+
x
2
⋅
x
y
\int\frac{dx}{y^3}=\frac{1}{x^2+y^2}\int d(\frac y x)=\frac{1}{y^2+ x^2}\cdot\frac x y
∫y3dx=x2+y21∫d(xy)=y2+x21⋅yx
(3)公式3
∫ y d x = 1 2 x y + y 2 ± x 2 2 ∫ d x y \int ydx=\frac{1}{2}xy+\frac{y^2\pm x^2}{2}\int\frac{dx}{y} ∫ydx=21xy+2y2±x2∫ydx
[证明]: 考虑分部积分法,证明 x d x − y d y = 0 xdx-ydy=0 xdx−ydy=0的情形,
有:
∫
y
d
x
=
x
y
−
∫
x
d
y
=
x
y
−
∫
x
2
y
d
x
=
x
y
+
∫
y
2
−
x
2
−
y
2
y
d
x
=
x
y
+
(
y
2
−
x
2
)
∫
d
x
y
−
∫
y
d
x
\begin{aligned} \int ydx &=xy-\int xdy\\ &=xy-\int\frac{x^2}{y}dx\\ &=xy+\int\frac{y^2-x^2-y^2}{y}dx\\ &=xy+(y^2-x^2)\int \frac {dx} y-\int ydx \end{aligned}
∫ydx=xy−∫xdy=xy−∫yx2dx=xy+∫yy2−x2−y2dx=xy+(y2−x2)∫ydx−∫ydx
令
A
=
∫
y
d
x
A=\int ydx
A=∫ydx,立即可得:
A
=
1
2
x
y
+
y
2
−
x
2
2
∫
d
x
y
A=\frac{1}{2}xy+\frac{y^2- x^2}{2}\int\frac{dx}{y}
A=21xy+2y2−x2∫ydx
另一种情形同理可证,略。
3.基础操作示例
No.1
求: ∫ x 2 + a 2 d x \int \sqrt{x^2+a^2}dx ∫x2+a2dx
[解]: 令 y = x 2 + a 2 , y 2 − x 2 = a 2 , y d y = x d x y=\sqrt{x^2+a^2},y^2-x^2=a^2,ydy=xdx y=x2+a2,y2−x2=a2,ydy=xdx
于是,原式 = ∫ y d x =\int ydx =∫ydx
根据公式3:
∫
y
d
x
=
1
2
x
y
+
y
2
−
x
2
2
∫
d
x
y
\int ydx=\frac{1}{2}xy+\frac{y^2-x^2}{2}\int\frac{dx}{y}
∫ydx=21xy+2y2−x2∫ydx
根据公式1,有:
∫
d
x
y
=
ln
∣
x
+
y
∣
\int \frac{dx}{y}=\ln|x+y|
∫ydx=ln∣x+y∣
于是,
∫
x
2
+
a
2
d
x
=
1
2
x
y
+
y
2
−
x
2
2
∫
d
x
y
=
1
2
x
x
2
+
a
2
+
a
2
2
ln
∣
x
+
x
2
+
a
2
∣
\begin{aligned} \int \sqrt{x^2+a^2}dx&=\frac{1}{2}xy+\frac{y^2-x^2}{2}\int\frac{dx}{y}\\ &=\frac{1}{2}x\sqrt {x^2+a^2}+\frac{a^2}{2}\ln|x+\sqrt{x^2+a^2}| \end{aligned}
∫x2+a2dx=21xy+2y2−x2∫ydx=21xx2+a2+2a2ln∣x+x2+a2∣
No.2
求 ∫ x 2 x 2 − 1 d x \int\frac{x^2}{\sqrt{x^2-1}}dx ∫x2−1x2dx
[解]:
∫
x
2
x
2
−
1
d
x
=
x
d
(
x
2
−
1
)
\int\frac{x^2}{\sqrt{x^2-1}}dx={x}d(\sqrt{x^2-1})
∫x2−1x2dx=xd(x2−1)
令
y
=
x
2
−
1
y=\sqrt{x^2-1}
y=x2−1,有:
x
2
−
y
2
=
1
,
y
d
y
=
x
d
x
x^2-y^2=1,ydy=xdx
x2−y2=1,ydy=xdx
于是:
∫
x
d
y
=
1
2
x
y
+
x
2
−
y
2
2
ln
∣
x
+
y
∣
\int xdy=\frac{1}{2}xy+\frac{x^2-y^2}{2}\ln|x+y|
∫xdy=21xy+2x2−y2ln∣x+y∣
即:
∫
x
2
x
2
−
1
d
x
=
1
2
x
x
2
−
1
+
1
2
ln
∣
x
+
x
2
−
1
∣
\int\frac{x^2}{\sqrt{x^2-1}}dx=\frac{1}{2}x\sqrt{x^2-1}+\frac{1}{2}\ln|x+\sqrt{x^2-1}|
∫x2−1x2dx=21xx2−1+21ln∣x+x2−1∣
No.3
求: ∫ d x x 2 + a 2 \int \frac{dx}{\sqrt{x^2+a^2}} ∫x2+a2dx
[解]: 令 y = x 2 + a 2 , y 2 − x 2 = a 2 , y d y = x d x y=x^2+a^2,y^2-x^2=a^2,ydy=xdx y=x2+a2,y2−x2=a2,ydy=xdx
由公式1,得:
∫
d
x
x
2
+
a
2
=
∫
d
x
y
=
ln
∣
x
+
y
∣
=
ln
∣
x
+
x
2
+
a
2
∣
\begin{aligned} \int \frac{dx}{\sqrt{x^2+a^2}}&=\int \frac{dx}{y}\\ &=\ln|x+y|\\ &=\ln|x+\sqrt{x^2+a^2}| \end{aligned}
∫x2+a2dx=∫ydx=ln∣x+y∣=ln∣x+x2+a2∣
4.根式示例
No.1
求: ∫ x − a x − b d x \int \sqrt{\frac{x-a}{x-b}}dx ∫x−bx−adx
[解]: 令 p = x − a , q = x − b p=\sqrt{x-a},q=\sqrt{x-b} p=x−a,q=x−b
有: p 2 + a = q 2 + b = x p^2+a=q^2+b=x p2+a=q2+b=x
所以:
∫
x
−
a
x
−
b
d
x
=
∫
p
q
⋅
2
q
d
q
=
2
∫
p
d
q
=
2
(
1
2
p
q
+
p
2
−
q
2
2
∫
d
q
p
)
=
p
q
+
(
b
−
a
)
ln
∣
p
+
q
∣
=
(
x
−
a
)
(
x
−
b
)
+
(
b
−
a
)
ln
∣
x
−
a
+
x
−
b
∣
\begin{aligned} \int \sqrt{\frac{x-a}{x-b}}dx&=\int\frac{p}{q}\cdot2qdq\\ &=2\int p dq\\ &=2(\frac{1}{2}pq+\frac{p^2-q^2}{2}\int\frac{dq}{p})\\ &=pq+{(b-a)}\ln|p+q|\\ &=\sqrt{(x-a)(x-b)}+(b-a)\ln|\sqrt{x-a}+\sqrt{x-b}| \end{aligned}
∫x−bx−adx=∫qp⋅2qdq=2∫pdq=2(21pq+2p2−q2∫pdq)=pq+(b−a)ln∣p+q∣=(x−a)(x−b)+(b−a)ln∣x−a+x−b∣
为了不改变定义域,改写为:
∫
x
−
a
x
−
b
d
x
=
(
x
−
a
)
(
x
−
b
)
+
b
−
a
2
ln
∣
2
x
−
a
−
b
+
(
x
−
a
)
(
x
−
b
)
∣
\int \sqrt{\frac{x-a}{x-b}}dx=\sqrt{(x-a)(x-b)}+\frac{b-a}2\ln|2x-a-b+\sqrt{(x-a)(x-b)}|
∫x−bx−adx=(x−a)(x−b)+2b−aln∣2x−a−b+(x−a)(x−b)∣
No.2
求: ∫ x d x x 2 + 2 x + 3 d x \int\frac{xdx}{\sqrt{x^2+2x+3}}dx ∫x2+2x+3xdxdx
[解]: 不妨令 m = x + 1 , n = ( x + 1 ) 2 + 2 m=x+1,n=\sqrt{(x+1)^2+2} m=x+1,n=(x+1)2+2
有: n 2 − m 2 = 2 , n d n = m d m n^2-m^2=2,ndn=mdm n2−m2=2,ndn=mdm
于是:
∫
x
d
x
x
2
+
2
x
+
3
d
x
=
∫
(
m
−
1
)
d
m
n
=
∫
m
d
m
n
−
∫
d
m
n
\begin{aligned} \int\frac{xdx}{\sqrt{x^2+2x+3}}dx&=\int\frac{(m-1)dm}{n}\\ &=\int \frac{mdm}{n}-\int \frac{dm}{n} \end{aligned}
∫x2+2x+3xdxdx=∫n(m−1)dm=∫nmdm−∫ndm
考虑:
∫
m
d
m
n
=
1
2
∫
d
(
m
2
)
n
=
1
2
⋅
m
2
n
+
∫
m
2
n
2
d
n
=
m
2
2
n
+
∫
n
2
−
2
n
2
d
n
=
m
2
2
n
+
n
+
2
n
\begin{aligned}\int \frac{mdm}{n}&=\frac{1}{2}\int\frac{d(m^2)}{n}\\&=\frac 1 2\cdot \frac{m^2}{n}+\int\frac{m^2}{n^2}dn\\&=\frac{m^2}{2n}+\int{\frac{n^2-2}{n^2}}dn\\&=\frac{m^2}{2n}+n+\frac{2}{n}\end{aligned}
∫nmdm=21∫nd(m2)=21⋅nm2+∫n2m2dn=2nm2+∫n2n2−2dn=2nm2+n+n2
而:
∫
d
m
n
=
ln
∣
m
+
n
∣
\int \frac{dm}{n}=\ln|m+n|
∫ndm=ln∣m+n∣
所以,
∫
x
d
x
x
2
+
2
x
+
3
d
x
=
m
2
2
n
+
n
+
2
n
−
ln
∣
m
+
n
∣
=
(
x
+
1
)
2
2
x
2
+
2
x
+
3
+
x
2
+
2
x
+
3
+
2
x
2
+
2
x
+
3
+
ln
∣
m
+
n
∣
\begin{aligned}\int\frac{xdx}{\sqrt{x^2+2x+3}}dx&=\frac{m^2}{2n}+n+\frac{2}{n}-\ln|m+n|\\&=\frac{(x+1)^2}{2\sqrt{x^2+2x+3}}+\sqrt{x^2+2x+3}+\frac{2}{\sqrt{x^2+2x+3}}+\ln|m+n|\end{aligned}
∫x2+2x+3xdxdx=2nm2+n+n2−ln∣m+n∣=2x2+2x+3(x+1)2+x2+2x+3+x2+2x+32+ln∣m+n∣
5.指数示例
No.1
求: ∫ e x − 1 e x + 1 d x \int \sqrt\frac{e^x-1}{e^x+1}dx ∫ex+1ex−1dx
[解]: 令 p = e x , q = e 2 x − 1 p=e^x,q=\sqrt{e^{2x}-1} p=ex,q=e2x−1
于是:
p
2
−
q
2
=
1
,
p
d
p
=
q
d
p
,
d
p
=
p
d
x
p^2-q^2=1,pdp=qdp,dp=pdx
p2−q2=1,pdp=qdp,dp=pdx
∫
e
x
−
1
e
x
+
1
d
x
=
∫
p
−
1
q
d
p
p
=
∫
d
p
q
−
∫
d
p
p
q
=
∫
d
p
q
−
∫
d
q
p
2
=
∫
d
p
q
−
∫
d
q
q
2
+
1
=
ln
∣
p
+
q
∣
+
arctan
q
=
ln
∣
e
x
+
e
2
x
−
1
∣
+
arctan
e
2
x
−
1
\begin{aligned}\int \sqrt\frac{e^x-1}{e^x+1}dx&=\int\frac{p-1}{q}\frac{dp}{p}\\&=\int\frac{dp}{q}-\int\frac{dp}{pq}\\&=\int\frac{dp}{q}-\int \frac{dq}{p^2}\\&=\int\frac{dp}{q}-\int \frac{dq}{q^2+1}\\&=\ln|p+q|+\arctan q\\&=\ln|e^x+\sqrt{e^{2x}-1}|+\arctan {\sqrt{e^{2x}-1}}\end{aligned}
∫ex+1ex−1dx=∫qp−1pdp=∫qdp−∫pqdp=∫qdp−∫p2dq=∫qdp−∫q2+1dq=ln∣p+q∣+arctanq=ln∣ex+e2x−1∣+arctane2x−1
No.2
求: ∫ d x 1 + e x + 1 − e x \int \frac{dx}{\sqrt{1+e^x}+\sqrt{1-e^x}} ∫1+ex+1−exdx
[解]: 令 p = 1 + e x , q = 1 − e x , r = e x 2 p=\sqrt{1+e^x},q=\sqrt{1-e^x},r=e^{\frac x 2} p=1+ex,q=1−ex,r=e2x
于是: p 2 − 1 = 1 − q 2 = r 2 = e x , 2 r d r = r 2 d x p^2-1=1-q^2=r^2=e^x,2rdr=r^2dx p2−1=1−q2=r2=ex,2rdr=r2dx
所以:
∫
d
x
1
+
e
x
+
1
−
e
x
=
∫
1
p
+
q
⋅
2
d
r
r
=
∫
p
−
q
2
r
2
⋅
d
r
r
=
q
−
p
2
r
2
+
∫
d
p
−
d
q
2
r
2
[
分部积分
]
=
q
−
p
2
r
2
+
1
2
∫
d
p
r
2
−
1
2
∫
d
q
r
2
=
q
−
p
2
r
2
+
1
2
∫
d
p
p
2
−
1
−
1
2
∫
d
q
1
−
q
2
=
q
−
p
2
r
2
+
1
4
(
ln
∣
p
−
1
p
+
1
∣
+
ln
∣
q
−
1
q
+
1
∣
)
=
1
−
e
x
−
1
+
e
x
2
e
x
+
1
4
ln
∣
1
+
e
x
−
1
1
+
e
x
+
1
∣
+
1
4
ln
∣
1
−
e
x
−
1
1
−
e
x
+
1
∣
\begin{aligned}\int \frac{dx}{\sqrt{1+e^x}+\sqrt{1-e^x}}&=\int\frac{1}{p+q}\cdot\frac{2dr}{r}\\&=\int\frac{p-q}{2r^2}\cdot\frac{dr}{r}\\&=\frac{q-p}{2r^2}+\int\frac{dp-dq}{2r^2}~~~~[分部积分]\\&=\frac{q-p}{2r^2}+\frac 1 2\int\frac{dp}{r^2}-\frac 1 2\int\frac{dq}{r^2}\\&=\frac{q-p}{2r^2}+\frac 1 2\int\frac{dp}{p^2-1}-\frac 1 2\int\frac{dq}{1-q^2}\\&=\frac{q-p}{2r^2}+\frac{1}4(\ln|\frac{p-1}{p+1}|+\ln|\frac{q-1}{q+1}|)\\&=\frac{\sqrt{1-e^x}-\sqrt{1+e^x}}{2e^x}+\frac{1}{4}\ln|\frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}|+\frac{1}{4}\ln|\frac{\sqrt{1-e^x}-1}{\sqrt{1-e^x}+1}|\\\end{aligned}
∫1+ex+1−exdx=∫p+q1⋅r2dr=∫2r2p−q⋅rdr=2r2q−p+∫2r2dp−dq [分部积分]=2r2q−p+21∫r2dp−21∫r2dq=2r2q−p+21∫p2−1dp−21∫1−q2dq=2r2q−p+41(ln∣p+1p−1∣+ln∣q+1q−1∣)=2ex1−ex−1+ex+41ln∣1+ex+11+ex−1∣+41ln∣1−ex+11−ex−1∣
6.三角函数示例
No.1
求: ∫ 1 − tan x 1 + tan x d x \int \frac{1-\tan x}{1+\tan x}dx ∫1+tanx1−tanxdx
[解]: 先考虑切化弦,然后令 m = cos x , n = sin x m=\cos x,n=\sin x m=cosx,n=sinx
于是: m 2 + n 2 = 1 , m d m + n d n = 0 m^2+n^2=1,mdm+ndn=0 m2+n2=1,mdm+ndn=0
所以:
∫
1
−
tan
x
1
+
tan
x
d
x
=
∫
cos
x
−
sin
x
cos
x
+
sin
x
d
x
=
∫
m
−
n
m
+
n
⋅
d
n
m
=
∫
m
d
n
+
m
d
m
m
+
n
⋅
1
m
=
∫
d
m
+
d
n
m
+
n
=
ln
∣
m
+
n
∣
=
ln
∣
sin
x
+
cos
x
∣
\begin{aligned}\int \frac{1-\tan x}{1+\tan x}dx&=\int \frac{\cos x-\sin x}{\cos x+\sin x}dx\\&=\int\frac{m-n}{m+n}\cdot \frac{dn}{m}\\&=\int\frac{mdn+mdm}{m+n}\cdot \frac{1}{m}\\&=\int\frac{dm+dn}{m+n}\\&=\ln|m+n|\\&=\ln|\sin x+\cos x|\end{aligned}
∫1+tanx1−tanxdx=∫cosx+sinxcosx−sinxdx=∫m+nm−n⋅mdn=∫m+nmdn+mdm⋅m1=∫m+ndm+dn=ln∣m+n∣=ln∣sinx+cosx∣
No.2
求: ∫ d x tan x + sin x \int\frac{dx}{\tan x+\sin x} ∫tanx+sinxdx
[解]: 令 m = sin x , n = cos x m=\sin x,n=\cos x m=sinx,n=cosx
于是:
∫
d
x
tan
x
+
sin
x
=
∫
1
m
n
+
m
⋅
d
m
n
=
∫
d
m
m
(
1
+
n
)
=
∫
d
m
(
1
−
n
)
m
3
=
n
−
1
2
m
2
+
1
2
∫
d
n
m
2
=
n
−
1
2
m
2
+
1
2
∫
d
n
1
−
n
2
=
n
−
1
2
m
2
−
1
4
ln
∣
n
−
1
n
+
1
∣
=
−
1
2
(
1
+
cos
x
)
−
1
4
ln
∣
cos
x
−
1
cos
x
+
1
∣
\begin{aligned}\int\frac{dx}{\tan x+\sin x}&=\int \frac{1}{\frac{m}{n}+m}\cdot \frac{dm}{n}\\&=\int\frac{dm}{m(1+n)}\\&=\int \frac{dm(1-n)}{m^3}\\&=\frac{n-1}{2m^2}+\frac 1 2\int\frac{dn}{m^2}\\&=\frac{n-1}{2m^2}+\frac 1 2\int\frac{dn}{1-n^2}\\&=\frac{n-1}{2m^2}-\frac 1 4\ln|\frac{n-1}{n+1}|\\&=-\frac{1}{2(1+\cos x)}-\frac 1 4 \ln|\frac{\cos x-1}{\cos x+1}|\end{aligned}
∫tanx+sinxdx=∫nm+m1⋅ndm=∫m(1+n)dm=∫m3dm(1−n)=2m2n−1+21∫m2dn=2m2n−1+21∫1−n2dn=2m2n−1−41ln∣n+1n−1∣=−2(1+cosx)1−41ln∣cosx+1cosx−1∣
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)