一个《跳动的爱心》代码,纯HTML+JS,双击直接运行
HTML+JS实现的一个跳动的爱心。集合了web动画库`GSAP JS`、OBJ 文件加载器`OBJLoader`、WebGL第三方库`Three.js`等。效果非常棒!
·
HTML+JS实现的一个跳动的爱心。集合了web动画库GSAP JS
、OBJ 文件加载器OBJLoader
、WebGL第三方库Three.js
等。效果非常棒!
实际效果:
由于是纯前端项目,JS代码没有任何加密,所以赶快给心爱的人,做一个跳动的爱心吧!
目录结构:
HTML代码
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>爱心</title>
<link rel="stylesheet" href="./css/style.css">
</head>
<body>
<script src='./js/three.min.js'></script>
<script src='./js/TrackballControls.js'></script>
<script src='./js/simplex-noise.js'></script>
<script src='./js/OBJLoader.js'></script>
<script src='./js/gsap.min.js'></script>
<script src="./js/script.js"></script>
<div id="main"></div>
<script type="text/javascript">
//获取父容器
var mainObj = document.getElementById('main')
//获取浏览器的高度
var innerWidth = document.body.clientWidth
var innerHeight = document.body.clientHeight
//计数器
var number = 0
/**
* 位置随机生成
*/
var interval = setInterval(function() {
var heart = document.createElement('heart')
heart.style.left = Math.floor(Math.random() * innerWidth) + 'px'
heart.style.top = Math.floor(Math.random() * innerHeight) + 'px'
mainObj.appendChild(heart)
number++
//数量达到520时结束
if (number >= 520) {
clearInterval(interval)
}
}, 50)
</script>
<script>
(function () {
const _face = new THREE.Triangle();
const _color = new THREE.Vector3();
class MeshSurfaceSampler {
constructor(mesh) {
let geometry = mesh.geometry;
if (!geometry.isBufferGeometry || geometry.attributes.position.itemSize !== 3) {
throw new Error('THREE.MeshSurfaceSampler: Requires BufferGeometry triangle mesh.');
}
if (geometry.index) {
console.warn('THREE.MeshSurfaceSampler: Converting geometry to non-indexed BufferGeometry.');
geometry = geometry.toNonIndexed();
}
this.geometry = geometry;
this.randomFunction = Math.random;
this.positionAttribute = this.geometry.getAttribute('position');
this.colorAttribute = this.geometry.getAttribute('color');
this.weightAttribute = null;
this.distribution = null;
}
setWeightAttribute(name) {
this.weightAttribute = name ? this.geometry.getAttribute(name) : null;
return this;
}
build() {
const positionAttribute = this.positionAttribute;
const weightAttribute = this.weightAttribute;
const faceWeights = new Float32Array(positionAttribute.count / 3); // Accumulate weights for each mesh face.
for (let i = 0; i < positionAttribute.count; i += 3) {
let faceWeight = 1;
if (weightAttribute) {
faceWeight = weightAttribute.getX(i) + weightAttribute.getX(i + 1) + weightAttribute.getX(i + 2);
}
_face.a.fromBufferAttribute(positionAttribute, i);
_face.b.fromBufferAttribute(positionAttribute, i + 1);
_face.c.fromBufferAttribute(positionAttribute, i + 2);
faceWeight *= _face.getArea();
faceWeights[i / 3] = faceWeight;
} // Store cumulative total face weights in an array, where weight index
// corresponds to face index.
this.distribution = new Float32Array(positionAttribute.count / 3);
let cumulativeTotal = 0;
for (let i = 0; i < faceWeights.length; i++) {
cumulativeTotal += faceWeights[i];
this.distribution[i] = cumulativeTotal;
}
return this;
}
setRandomGenerator(randomFunction) {
this.randomFunction = randomFunction;
return this;
}
sample(targetPosition, targetNormal, targetColor) {
const cumulativeTotal = this.distribution[this.distribution.length - 1];
const faceIndex = this.binarySearch(this.randomFunction() * cumulativeTotal);
return this.sampleFace(faceIndex, targetPosition, targetNormal, targetColor);
}
binarySearch(x) {
const dist = this.distribution;
let start = 0;
let end = dist.length - 1;
let index = - 1;
while (start <= end) {
const mid = Math.ceil((start + end) / 2);
if (mid === 0 || dist[mid - 1] <= x && dist[mid] > x) {
index = mid;
break;
} else if (x < dist[mid]) {
end = mid - 1;
} else {
start = mid + 1;
}
}
return index;
}
sampleFace(faceIndex, targetPosition, targetNormal, targetColor) {
let u = this.randomFunction();
let v = this.randomFunction();
if (u + v > 1) {
u = 1 - u;
v = 1 - v;
}
_face.a.fromBufferAttribute(this.positionAttribute, faceIndex * 3);
_face.b.fromBufferAttribute(this.positionAttribute, faceIndex * 3 + 1);
_face.c.fromBufferAttribute(this.positionAttribute, faceIndex * 3 + 2);
targetPosition.set(0, 0, 0).addScaledVector(_face.a, u).addScaledVector(_face.b, v).addScaledVector(_face.c, 1 - (u + v));
if (targetNormal !== undefined) {
_face.getNormal(targetNormal);
}
if (targetColor !== undefined && this.colorAttribute !== undefined) {
_face.a.fromBufferAttribute(this.colorAttribute, faceIndex * 3);
_face.b.fromBufferAttribute(this.colorAttribute, faceIndex * 3 + 1);
_face.c.fromBufferAttribute(this.colorAttribute, faceIndex * 3 + 2);
_color.set(0, 0, 0).addScaledVector(_face.a, u).addScaledVector(_face.b, v).addScaledVector(_face.c, 1 - (u + v));
targetColor.r = _color.x;
targetColor.g = _color.y;
targetColor.b = _color.z;
}
return this;
}
}
THREE.MeshSurfaceSampler = MeshSurfaceSampler;
})();
</script>
<script>
(function () {
const _object_pattern = /^[og]\s*(.+)?/; // mtllib file_reference
const _material_library_pattern = /^mtllib /; // usemtl material_name
const _material_use_pattern = /^usemtl /; // usemap map_name
const _map_use_pattern = /^usemap /;
const _vA = new THREE.Vector3();
const _vB = new THREE.Vector3();
const _vC = new THREE.Vector3();
const _ab = new THREE.Vector3();
const _cb = new THREE.Vector3();
function ParserState() {
const state = {
objects: [],
object: {},
vertices: [],
normals: [],
colors: [],
uvs: [],
materials: {},
materialLibraries: [],
startObject: function (name, fromDeclaration) {
// If the current object (initial from reset) is not from a g/o declaration in the parsed
// file. We need to use it for the first parsed g/o to keep things in sync.
if (this.object && this.object.fromDeclaration === false) {
this.object.name = name;
this.object.fromDeclaration = fromDeclaration !== false;
return;
}
const previousMaterial = this.object && typeof this.object.currentMaterial === 'function' ? this.object.currentMaterial() : undefined;
if (this.object && typeof this.object._finalize === 'function') {
this.object._finalize(true);
}
this.object = {
name: name || '',
fromDeclaration: fromDeclaration !== false,
geometry: {
vertices: [],
normals: [],
colors: [],
uvs: [],
hasUVIndices: false
},
materials: [],
smooth: true,
startMaterial: function (name, libraries) {
const previous = this._finalize(false); // New usemtl declaration overwrites an inherited material, except if faces were declared
// after the material, then it must be preserved for proper MultiMaterial continuation.
if (previous && (previous.inherited || previous.groupCount <= 0)) {
this.materials.splice(previous.index, 1);
}
const material = {
index: this.materials.length,
name: name || '',
mtllib: Array.isArray(libraries) && libraries.length > 0 ? libraries[libraries.length - 1] : '',
smooth: previous !== undefined ? previous.smooth : this.smooth,
groupStart: previous !== undefined ? previous.groupEnd : 0,
groupEnd: - 1,
groupCount: - 1,
inherited: false,
clone: function (index) {
const cloned = {
index: typeof index === 'number' ? index : this.index,
name: this.name,
mtllib: this.mtllib,
smooth: this.smooth,
groupStart: 0,
groupEnd: - 1,
groupCount: - 1,
inherited: false
};
cloned.clone = this.clone.bind(cloned);
return cloned;
}
};
this.materials.push(material);
return material;
},
currentMaterial: function () {
if (this.materials.length > 0) {
return this.materials[this.materials.length - 1];
}
return undefined;
},
_finalize: function (end) {
const lastMultiMaterial = this.currentMaterial();
if (lastMultiMaterial && lastMultiMaterial.groupEnd === - 1) {
lastMultiMaterial.groupEnd = this.geometry.vertices.length / 3;
lastMultiMaterial.groupCount = lastMultiMaterial.groupEnd - lastMultiMaterial.groupStart;
lastMultiMaterial.inherited = false;
} // Ignore objects tail materials if no face declarations followed them before a new o/g started.
if (end && this.materials.length > 1) {
for (let mi = this.materials.length - 1; mi >= 0; mi--) {
if (this.materials[mi].groupCount <= 0) {
this.materials.splice(mi, 1);
}
}
} // Guarantee at least one empty material, this makes the creation later more straight forward.
if (end && this.materials.length === 0) {
this.materials.push({
name: '',
smooth: this.smooth
});
}
return lastMultiMaterial;
}
}; // Inherit previous objects material.
// Spec tells us that a declared material must be set to all objects until a new material is declared.
// If a usemtl declaration is encountered while this new object is being parsed, it will
// overwrite the inherited material. Exception being that there was already face declarations
// to the inherited material, then it will be preserved for proper MultiMaterial continuation.
if (previousMaterial && previousMaterial.name && typeof previousMaterial.clone === 'function') {
const declared = previousMaterial.clone(0);
declared.inherited = true;
this.object.materials.push(declared);
}
this.objects.push(this.object);
},
finalize: function () {
if (this.object && typeof this.object._finalize === 'function') {
this.object._finalize(true);
}
},
parseVertexIndex: function (value, len) {
const index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 3) * 3;
},
parseNormalIndex: function (value, len) {
const index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 3) * 3;
},
parseUVIndex: function (value, len) {
const index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 2) * 2;
},
addVertex: function (a, b, c) {
const src = this.vertices;
const dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
dst.push(src[b + 0], src[b + 1], src[b + 2]);
dst.push(src[c + 0], src[c + 1], src[c + 2]);
},
addVertexPoint: function (a) {
const src = this.vertices;
const dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
},
addVertexLine: function (a) {
const src = this.vertices;
const dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
},
addNormal: function (a, b, c) {
const src = this.normals;
const dst = this.object.geometry.normals;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
dst.push(src[b + 0], src[b + 1], src[b + 2]);
dst.push(src[c + 0], src[c + 1], src[c + 2]);
},
addFaceNormal: function (a, b, c) {
const src = this.vertices;
const dst = this.object.geometry.normals;
_vA.fromArray(src, a);
_vB.fromArray(src, b);
_vC.fromArray(src, c);
_cb.subVectors(_vC, _vB);
_ab.subVectors(_vA, _vB);
_cb.cross(_ab);
_cb.normalize();
dst.push(_cb.x, _cb.y, _cb.z);
dst.push(_cb.x, _cb.y, _cb.z);
dst.push(_cb.x, _cb.y, _cb.z);
},
addColor: function (a, b, c) {
const src = this.colors;
const dst = this.object.geometry.colors;
if (src[a] !== undefined) dst.push(src[a + 0], src[a + 1], src[a + 2]);
if (src[b] !== undefined) dst.push(src[b + 0], src[b + 1], src[b + 2]);
if (src[c] !== undefined) dst.push(src[c + 0], src[c + 1], src[c + 2]);
},
addUV: function (a, b, c) {
const src = this.uvs;
const dst = this.object.geometry.uvs;
dst.push(src[a + 0], src[a + 1]);
dst.push(src[b + 0], src[b + 1]);
dst.push(src[c + 0], src[c + 1]);
},
addDefaultUV: function () {
const dst = this.object.geometry.uvs;
dst.push(0, 0);
dst.push(0, 0);
dst.push(0, 0);
},
addUVLine: function (a) {
const src = this.uvs;
const dst = this.object.geometry.uvs;
dst.push(src[a + 0], src[a + 1]);
},
addFace: function (a, b, c, ua, ub, uc, na, nb, nc) {
const vLen = this.vertices.length;
let ia = this.parseVertexIndex(a, vLen);
let ib = this.parseVertexIndex(b, vLen);
let ic = this.parseVertexIndex(c, vLen);
this.addVertex(ia, ib, ic);
this.addColor(ia, ib, ic); // normals
if (na !== undefined && na !== '') {
const nLen = this.normals.length;
ia = this.parseNormalIndex(na, nLen);
ib = this.parseNormalIndex(nb, nLen);
ic = this.parseNormalIndex(nc, nLen);
this.addNormal(ia, ib, ic);
} else {
this.addFaceNormal(ia, ib, ic);
} // uvs
if (ua !== undefined && ua !== '') {
const uvLen = this.uvs.length;
ia = this.parseUVIndex(ua, uvLen);
ib = this.parseUVIndex(ub, uvLen);
ic = this.parseUVIndex(uc, uvLen);
this.addUV(ia, ib, ic);
this.object.geometry.hasUVIndices = true;
} else {
// add placeholder values (for inconsistent face definitions)
this.addDefaultUV();
}
},
addPointGeometry: function (vertices) {
this.object.geometry.type = 'Points';
const vLen = this.vertices.length;
for (let vi = 0, l = vertices.length; vi < l; vi++) {
const index = this.parseVertexIndex(vertices[vi], vLen);
this.addVertexPoint(index);
this.addColor(index);
}
},
addLineGeometry: function (vertices, uvs) {
this.object.geometry.type = 'Line';
const vLen = this.vertices.length;
const uvLen = this.uvs.length;
for (let vi = 0, l = vertices.length; vi < l; vi++) {
this.addVertexLine(this.parseVertexIndex(vertices[vi], vLen));
}
for (let uvi = 0, l = uvs.length; uvi < l; uvi++) {
this.addUVLine(this.parseUVIndex(uvs[uvi], uvLen));
}
}
};
state.startObject('', false);
return state;
} //
class OBJLoader extends THREE.Loader {
constructor(manager) {
super(manager);
this.materials = null;
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const loader = new THREE.FileLoader(this.manager);
loader.setPath(this.path);
loader.setRequestHeader(this.requestHeader);
loader.setWithCredentials(this.withCredentials);
loader.load(url, function (text) {
try {
onLoad(scope.parse(text));
} catch (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
}
}, onProgress, onError);
}
setMaterials(materials) {
this.materials = materials;
return this;
}
parse(text) {
const state = new ParserState();
if (text.indexOf('\r\n') !== - 1) {
// This is faster than String.split with regex that splits on both
text = text.replace(/\r\n/g, '\n');
}
if (text.indexOf('\\\n') !== - 1) {
// join lines separated by a line continuation character (\)
text = text.replace(/\\\n/g, '');
}
const lines = text.split('\n');
let line = '',
lineFirstChar = '';
let lineLength = 0;
let result = []; // Faster to just trim left side of the line. Use if available.
const trimLeft = typeof ''.trimLeft === 'function';
for (let i = 0, l = lines.length; i < l; i++) {
line = lines[i];
line = trimLeft ? line.trimLeft() : line.trim();
lineLength = line.length;
if (lineLength === 0) continue;
lineFirstChar = line.charAt(0); // @todo invoke passed in handler if any
if (lineFirstChar === '#') continue;
if (lineFirstChar === 'v') {
const data = line.split(/\s+/);
switch (data[0]) {
case 'v':
state.vertices.push(parseFloat(data[1]), parseFloat(data[2]), parseFloat(data[3]));
if (data.length >= 7) {
state.colors.push(parseFloat(data[4]), parseFloat(data[5]), parseFloat(data[6]));
} else {
// if no colors are defined, add placeholders so color and vertex indices match
state.colors.push(undefined, undefined, undefined);
}
break;
case 'vn':
state.normals.push(parseFloat(data[1]), parseFloat(data[2]), parseFloat(data[3]));
break;
case 'vt':
state.uvs.push(parseFloat(data[1]), parseFloat(data[2]));
break;
}
} else if (lineFirstChar === 'f') {
const lineData = line.substr(1).trim();
const vertexData = lineData.split(/\s+/);
const faceVertices = []; // Parse the face vertex data into an easy to work with format
for (let j = 0, jl = vertexData.length; j < jl; j++) {
const vertex = vertexData[j];
if (vertex.length > 0) {
const vertexParts = vertex.split('/');
faceVertices.push(vertexParts);
}
} // Draw an edge between the first vertex and all subsequent vertices to form an n-gon
const v1 = faceVertices[0];
for (let j = 1, jl = faceVertices.length - 1; j < jl; j++) {
const v2 = faceVertices[j];
const v3 = faceVertices[j + 1];
state.addFace(v1[0], v2[0], v3[0], v1[1], v2[1], v3[1], v1[2], v2[2], v3[2]);
}
} else if (lineFirstChar === 'l') {
const lineParts = line.substring(1).trim().split(' ');
let lineVertices = [];
const lineUVs = [];
if (line.indexOf('/') === - 1) {
lineVertices = lineParts;
} else {
for (let li = 0, llen = lineParts.length; li < llen; li++) {
const parts = lineParts[li].split('/');
if (parts[0] !== '') lineVertices.push(parts[0]);
if (parts[1] !== '') lineUVs.push(parts[1]);
}
}
state.addLineGeometry(lineVertices, lineUVs);
} else if (lineFirstChar === 'p') {
const lineData = line.substr(1).trim();
const pointData = lineData.split(' ');
state.addPointGeometry(pointData);
} else if ((result = _object_pattern.exec(line)) !== null) {
// o object_name
// or
// g group_name
// WORKAROUND: https://bugs.chromium.org/p/v8/issues/detail?id=2869
// let name = result[ 0 ].substr( 1 ).trim();
const name = (' ' + result[0].substr(1).trim()).substr(1);
state.startObject(name);
} else if (_material_use_pattern.test(line)) {
// material
state.object.startMaterial(line.substring(7).trim(), state.materialLibraries);
} else if (_material_library_pattern.test(line)) {
// mtl file
state.materialLibraries.push(line.substring(7).trim());
} else if (_map_use_pattern.test(line)) {
// the line is parsed but ignored since the loader assumes textures are defined MTL files
// (according to https://www.okino.com/conv/imp_wave.htm, 'usemap' is the old-style Wavefront texture reference method)
console.warn('THREE.OBJLoader: Rendering identifier "usemap" not supported. Textures must be defined in MTL files.');
} else if (lineFirstChar === 's') {
result = line.split(' '); // smooth shading
// @todo Handle files that have varying smooth values for a set of faces inside one geometry,
// but does not define a usemtl for each face set.
// This should be detected and a dummy material created (later MultiMaterial and geometry groups).
// This requires some care to not create extra material on each smooth value for "normal" obj files.
// where explicit usemtl defines geometry groups.
// Example asset: examples/models/obj/cerberus/Cerberus.obj
/*
* http://paulbourke.net/dataformats/obj/
* or
* http://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf
*
* From chapter "Grouping" Syntax explanation "s group_number":
* "group_number is the smoothing group number. To turn off smoothing groups, use a value of 0 or off.
* Polygonal elements use group numbers to put elements in different smoothing groups. For free-form
* surfaces, smoothing groups are either turned on or off; there is no difference between values greater
* than 0."
*/
if (result.length > 1) {
const value = result[1].trim().toLowerCase();
state.object.smooth = value !== '0' && value !== 'off';
} else {
// ZBrush can produce "s" lines #11707
state.object.smooth = true;
}
const material = state.object.currentMaterial();
if (material) material.smooth = state.object.smooth;
} else {
// Handle null terminated files without exception
if (line === '\0') continue;
console.warn('THREE.OBJLoader: Unexpected line: "' + line + '"');
}
}
state.finalize();
const container = new THREE.Group();
container.materialLibraries = [].concat(state.materialLibraries);
const hasPrimitives = !(state.objects.length === 1 && state.objects[0].geometry.vertices.length === 0);
if (hasPrimitives === true) {
for (let i = 0, l = state.objects.length; i < l; i++) {
const object = state.objects[i];
const geometry = object.geometry;
const materials = object.materials;
const isLine = geometry.type === 'Line';
const isPoints = geometry.type === 'Points';
let hasVertexColors = false; // Skip o/g line declarations that did not follow with any faces
if (geometry.vertices.length === 0) continue;
const buffergeometry = new THREE.BufferGeometry();
buffergeometry.setAttribute('position', new THREE.Float32BufferAttribute(geometry.vertices, 3));
if (geometry.normals.length > 0) {
buffergeometry.setAttribute('normal', new THREE.Float32BufferAttribute(geometry.normals, 3));
}
if (geometry.colors.length > 0) {
hasVertexColors = true;
buffergeometry.setAttribute('color', new THREE.Float32BufferAttribute(geometry.colors, 3));
}
if (geometry.hasUVIndices === true) {
buffergeometry.setAttribute('uv', new THREE.Float32BufferAttribute(geometry.uvs, 2));
} // Create materials
const createdMaterials = [];
for (let mi = 0, miLen = materials.length; mi < miLen; mi++) {
const sourceMaterial = materials[mi];
const materialHash = sourceMaterial.name + '_' + sourceMaterial.smooth + '_' + hasVertexColors;
let material = state.materials[materialHash];
if (this.materials !== null) {
material = this.materials.create(sourceMaterial.name); // mtl etc. loaders probably can't create line materials correctly, copy properties to a line material.
if (isLine && material && !(material instanceof THREE.LineBasicMaterial)) {
const materialLine = new THREE.LineBasicMaterial();
THREE.Material.prototype.copy.call(materialLine, material);
materialLine.color.copy(material.color);
material = materialLine;
} else if (isPoints && material && !(material instanceof THREE.PointsMaterial)) {
const materialPoints = new THREE.PointsMaterial({
size: 10,
sizeAttenuation: false
});
THREE.Material.prototype.copy.call(materialPoints, material);
materialPoints.color.copy(material.color);
materialPoints.map = material.map;
material = materialPoints;
}
}
if (material === undefined) {
if (isLine) {
material = new THREE.LineBasicMaterial();
} else if (isPoints) {
material = new THREE.PointsMaterial({
size: 1,
sizeAttenuation: false
});
} else {
material = new THREE.MeshPhongMaterial();
}
material.name = sourceMaterial.name;
material.flatShading = sourceMaterial.smooth ? false : true;
material.vertexColors = hasVertexColors;
state.materials[materialHash] = material;
}
createdMaterials.push(material);
} // Create mesh
let mesh;
if (createdMaterials.length > 1) {
for (let mi = 0, miLen = materials.length; mi < miLen; mi++) {
const sourceMaterial = materials[mi];
buffergeometry.addGroup(sourceMaterial.groupStart, sourceMaterial.groupCount, mi);
}
if (isLine) {
mesh = new THREE.LineSegments(buffergeometry, createdMaterials);
} else if (isPoints) {
mesh = new THREE.Points(buffergeometry, createdMaterials);
} else {
mesh = new THREE.Mesh(buffergeometry, createdMaterials);
}
} else {
if (isLine) {
mesh = new THREE.LineSegments(buffergeometry, createdMaterials[0]);
} else if (isPoints) {
mesh = new THREE.Points(buffergeometry, createdMaterials[0]);
} else {
mesh = new THREE.Mesh(buffergeometry, createdMaterials[0]);
}
}
mesh.name = object.name;
container.add(mesh);
}
} else {
// if there is only the default parser state object with no geometry data, interpret data as point cloud
if (state.vertices.length > 0) {
const material = new THREE.PointsMaterial({
size: 1,
sizeAttenuation: false
});
const buffergeometry = new THREE.BufferGeometry();
buffergeometry.setAttribute('position', new THREE.Float32BufferAttribute(state.vertices, 3));
if (state.colors.length > 0 && state.colors[0] !== undefined) {
buffergeometry.setAttribute('color', new THREE.Float32BufferAttribute(state.colors, 3));
material.vertexColors = true;
}
const points = new THREE.Points(buffergeometry, material);
container.add(points);
}
}
return container;
}
}
THREE.OBJLoader = OBJLoader;
})();
</script>
</body>
</html>
CSS代码
* {
padding: 0;
margin: 0;
}
body {
background: #ff5555;
overflow: hidden;
margin: 0;
/* background-color: #000 !important; */
}
/**
* 主容器
*/
div#main {
width: 100vw;
height: 100vh;
}
/**
* 设置无限的动效
* 单次动效时间3s
*/
heart {
position: absolute;
width: 20px;
height: 20px;
color: #FFF;
text-align: center;
/* background: #e74c3c; */
font-size: 30px;
transform: rotate(360deg) scale(.6);
opacity: .5;
animation-name: opacity;
animation-duration: 3s;
animation-iteration-count: infinite;
}
/**
* 用伪类在heart content即是展示的文字效果
*/
heart::before {
position: absolute;
content: 'love-code';
width: 200px;
height: 20px;
/* background: #e74c3c; */
border-radius: 50%;
transform: translateX(-10px);
}
/**
*用伪类在heart
*/
heart::after {
position: absolute;
content: '';
width: 20px;
height: 20px;
/* background: #e74c3c; */
border-radius: 50%;
transform: translateY(-10px);
}
/**
* 改变透明度
*/
@keyframes opacity {
25%,
75% {
opacity: 1;
}
50%,
100% {
opacity: .5;
}
}
js代码:
gsap.min.js
、OBJLoader.js
、simplex-noise.js
、three.min.js
、TrackballControls.js
这几个JS都是现成的。
script.js代码:
console.clear();
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(
75,
window.innerWidth / window.innerHeight,
0.1,
1000
);
const renderer = new THREE.WebGLRenderer({
antialias: true
});
renderer.setClearColor(0xff5555);
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
camera.position.z = 1;
const controls = new THREE.TrackballControls(camera, renderer.domElement);
controls.noPan = true;
controls.maxDistance = 3;
controls.minDistance = 0.7;
const group = new THREE.Group();
scene.add(group);
let heart = null;
let sampler = null;
let originHeart = null;
//new THREE.OBJLoader().load('./obj/heart_2.obj',obj => {
new THREE.OBJLoader().load('https://assets.codepen.io/127738/heart_2.obj',obj => {
heart = obj.children[0];
heart.geometry.rotateX(-Math.PI * 0.5);
heart.geometry.scale(0.04, 0.04, 0.04);
heart.geometry.translate(0, -0.4, 0);
group.add(heart);
heart.material = new THREE.MeshBasicMaterial({
color: 0xff5555
});
originHeart = Array.from(heart.geometry.attributes.position.array);
sampler = new THREE.MeshSurfaceSampler(heart).build();
init();
renderer.setAnimationLoop(render);
});
let positions = [];
const geometry = new THREE.BufferGeometry();
const material = new THREE.LineBasicMaterial({
color: 0xffffff
});
const lines = new THREE.LineSegments(geometry, material);
group.add(lines);
const simplex = new SimplexNoise();
const pos = new THREE.Vector3();
class Grass {
constructor () {
sampler.sample(pos);
this.pos = pos.clone();
this.scale = Math.random() * 0.01 + 0.001;
this.one = null;
this.two = null;
}
update (a) {
const noise = simplex.noise4D(this.pos.x*1.5, this.pos.y*1.5, this.pos.z*1.5, a * 0.0005) + 1;
this.one = this.pos.clone().multiplyScalar(1.01 + (noise * 0.15 * beat.a));
this.two = this.one.clone().add(this.one.clone().setLength(this.scale));
}
}
let spikes = [];
function init (a) {
positions = [];
for (let i = 0; i < 20000; i++) {
const g = new Grass();
spikes.push(g);
}
}
const beat = { a: 0 };
gsap.timeline({
repeat: -1,
repeatDelay: 0.3
}).to(beat, {
a: 1.2,
duration: 0.6,
ease: 'power2.in'
}).to(beat, {
a: 0.0,
duration: 0.6,
ease: 'power3.out'
});
gsap.to(group.rotation, {
y: Math.PI * 2,
duration: 12,
ease: 'none',
repeat: -1
});
function render(a) {
positions = [];
spikes.forEach(g => {
g.update(a);
positions.push(g.one.x, g.one.y, g.one.z);
positions.push(g.two.x, g.two.y, g.two.z);
});
geometry.setAttribute('position', new THREE.BufferAttribute(new Float32Array(positions), 3));
const vs = heart.geometry.attributes.position.array;
for (let i = 0; i < vs.length; i+=3) {
const v = new THREE.Vector3(originHeart[i], originHeart[i+1], originHeart[i+2]);
const noise = simplex.noise4D(originHeart[i]*1.5, originHeart[i+1]*1.5, originHeart[i+2]*1.5, a * 0.0005) + 1;
v.multiplyScalar(1 + (noise * 0.15 * beat.a));
vs[i] = v.x;
vs[i+1] = v.y;
vs[i+2] = v.z;
}
heart.geometry.attributes.position.needsUpdate = true;
controls.update();
renderer.render(scene, camera);
}
window.addEventListener("resize", onWindowResize, false);
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
}
简单的修改
- 页面闪烁的love-code一共展现520个。可在index.html调整,大约在42行处
- love-code可以换成你想要的,可在css/style.css里修改,大约在43行处
- 爱心是读取的网络的3dmax文件,你也可以修改为自己的3dmax文件,位置是js/script.js文件,大约在32行处。
完整文件下载
点击下方公众号卡片,关注我,回复
爱心
下载!
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
已为社区贡献2条内容
所有评论(0)