前言

这是全新的一个篇章呢,二叉搜索树是我们接下来学习set、map的前提
迈过它吧,关关难过关关过!

正文开始!


一、二叉搜索树的概念

定义

  二叉搜索树(Binary search tree)是基于二叉树的一种改进版本。因为 普通二叉树没有实际价值,无法进行插入、删除等操作(无意义),但二叉搜索树就不一样了,二叉搜索树对于数据的存储有严格要求:左节点比根小,右节点比根大

因此 二叉搜索树 的查找效率极高,具有一定的实际价值

  所以将数据存入 二叉搜索树 中进行查找时,理想情况下只需要花费 logN 的时间(二分思想)

  这就是 二叉搜索树 名字的由来,搜索(查找)速度很快

特点

  二叉树的基本特点:左比根小,右比根大

  1. 若某个节点的 左 节点不为空,则 左 节点的值一定比当前节点的值 小,且其 左 子树的所有节点都比它 小
  2. 若某个节点的 右 节点不为空,则 右 节点的值一定比当前节点的值 大,且其 右 子树的所有节点都比它 大
  3. 二叉搜索树的每一个节点的 根、左 、右 都满足基本特点

另外,中序遍历的结果为升序

二、二叉树的实现

二叉搜索树的源代码

基本框架

  跟普通的二叉树一样,二叉搜索树也需要节点类,同时将节点指针作为二叉搜索树的成员变量

template <class K>
struct BSTNode
{
	K _key;
	BSTNode<K>* _left;
	BSTNode<K>* _right;

	BSTNode(const K& key = K())
		:_key(key)
		,_left(nullptr)
		,_right(nullptr)
	{}

};

template <class K>
class BSTree
{
	typedef BSTNode<K> Node;
public:
	BSTree()
		:_root(nullptr)
	{}
	
private:
	Node* _root;
};

查找

  得益于二叉搜索树的特性,我们可以比较插入数字和当前节点的值,当比当前节点大的时候的时候往右走,反之则往左,若 cur 为空,那么返回 false ,若找到,则返回 true
在这里插入图片描述

bool Find(const K& key)
{
	Node* cur = _root;

	while (cur) {
		if (key > cur->_key) 
			cur = cur->_right;

		else if (key < cur->_key) 
			cur = cur->_left;

		else return true;
	}

	return false;
}

插入

  插入其实过程和查找差不多,只不过如果中途找到了就返回 false 表示二叉搜索树中已经有该数字,如果成功走到空了就开始插入
在这里插入图片描述

  只不过我们需要注意,当搜索树为空树的时候,我们必须新建立一个节点,将指针赋给这个根节点,另外,我们需要申请一个指针变量 parent 来记录父节点,方便后续链接

bool Insert(const K& key)
{
	// 如果为空树,则直接建立一个节点
	// 将其地址存放在_root上
	if (_root == nullptr)
	{
		_root = new Node(key);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;

	// 一直循环到cur为空
	while (cur) {
		if (key > cur->_key) {
			parent = cur;
			cur = cur->_right;
		}
		else if (key < cur->_key) {
			parent = cur;
			cur = cur->_left;
		}
		else {
			// 如果中途发现BS树已有key,则插入失败
			// BS树中没有重复元素,依据定义
			return false;
		}
	}

	// 此时建立一个节点,将其地址赋值给cur
	cur = new Node(key);

	// 此时需要根据值的大小来判断parent左链还是右链
	if (key > parent->_key)
		parent->_right = cur;
	else parent->_left = cur;

	return true;
}

删除

  删除可就复杂了,要考虑很多情况!

  我们发现如果我们要删除一个节点,并且在二叉搜索树中已经确定找到了该节点,可能有三种情况:

  1. 该节点没有孩子,即要删除的是叶子节点
  2. 该节点只有一个孩子,可能是左孩子为空,也有可能是有孩子为空
  3. 该节点有两个孩子,这种情况比较复杂,要考虑比较复杂的情况

当只有0 ~ 1个孩子的时候

  我们先来看第二种情况,当找到要删除的节点且该节点只有一个孩子后,此时显然父节点链上当前节点的子节点就可以了,这样不会破坏二叉搜索树的结构

二叉搜索树的右子树的值一定大于该节点的值,同样的,左子树的值一定小于该节点的值

  于是,我们就想着再销毁当前节点之前,先判断是父节点的左边链接还是右边链接,这很简单,我们检查一下 parent 左右指针哪个指向 cur 就行,同时,我们也要思考一下子节点与 cur 的链接关系,很简单,这也是直接判断一下就可以

其实,这种方法囊括了第一第二种情况,你可以思考一下为什么

// 如果左孩子为空
// 这时候就要parent就要链到cur的右边去
if (cur->_left == nullptr) {
	if (parent->_left == cur)
		parent->_left = cur->_right;
	else parent->_right = cur->_right;

	// 删除
	delete cur;
	cur = nullptr;

	return true;
}

// 如果右孩子为空
// 这时候就要parent就要链到cur的左边去
else if (cur->_right == nullptr) {
	if (parent->_left == cur)
		parent->_left = cur->_left;
	else parent->_right = cur->_left;

	// 删除
	delete cur;
	cur = nullptr;

	return true;
}

右子树为空
在这里插入图片描述

左子树为空
在这里插入图片描述

当有2个孩子的时候

在这里插入图片描述

  当左右孩子节点都不为空的时候,我们也要想想,万一把 cur 给删掉了,要换那一个替上来?

  关于这个问题,我们还是要把握二叉搜索树的一个核心特性,就是左子树所有节点的值一定比根节点小,右子树所有节点的值一定比根节点大

  那么只要将左子树最大的值和右子树最小的值找到,此时我们又要想,将两个其中之一的值替代父节点的值即可,然后再销毁节点,那么这样会不会破坏二叉树的结构呢?

  显然不会,只要能正确销毁并正确链接,那么就没关系,在这里我们选择找到右子树的最小值,这很简单,因为一个二叉搜索树的最小值就是最左边那个,那么我们同样用 rightMin 标记右子树的最小节点 ,用 rightMinP 标记其父节点,又为了防止 rightMinP 进不去循环,我们给 rightMinP 赋值 cur


Node* rightMinP = cur;
Node* rightMin = cur->_right;

// 找到右子树的最小节点
while (rightMin->_left) {
	rightMinP = rightMin;
	rightMin = rightMin->_left;
}

// 替代,这时候转换成就要删除rightMin这个节点了
// 这个时候就需要有它的父亲
cur->_key = rightMin->_key;

// 因为rightMin必然是最左节点
// 所以rightMinP必然是链接rightMin的右孩子
// 同时rightMinP是左链还是右链这不确定,需要判断一下
if (rightMinP->_left == rightMin)
	rightMinP->_left = rightMin->_right;
else rightMinP->_right = rightMin->_right;

delete rightMin;
rightMin = nullptr;

return true;

  但是但是!!我们发现写到这里后,当删到最后只剩几个节点之后,报错了!

  我们再回看代码,发现我们的逻辑是先找到删除节点,再用父亲节点去链接当前节点的子节点,关键是,有没有可能一开始我们就找到了要删除的节点,父亲节点没进循环,也就是说,没有父亲节点,这很不好,针对这种情况,我们就要移动根节点

if (parent == nullptr) {
	_root = _root->_right;

	delete cur;
	cur = nullptr;
	return true;
}

三、二叉树的应用

K模型

  K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值

我们上述代码实现的也就是这种

  举个例子,给一个单词word,判断该单词是否拼写正确,具体方式如下:

  1. 以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
  2. 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误

KV模型

  每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对

  比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对

  再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是<word, count>就构成一种键值对

KV模型也就是在K模型的基础上加上value的值,请试试吧!

四、二叉树的性能分析

  如果我问你二叉搜索树的查找时间复杂度为多少,你可能会不假思索的回答出是O(logN),但是,假如我给一个递减数列呢,是不是就退化成单支树了?

  所以理想状态下是O(logN),最坏情况下是O(N)


总结

  看了性能分析,你可能会想怎么让二叉树的性能达到最优?不急,AVL树和红黑树已经在路上了!~

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐