已知: u = f ( x , y ) u=f(x,y) u=f(x,y)有二阶连续偏导数,计算 ∂ 2 u ∂ x 2 − ∂ 2 u ∂ y 2 \frac{\partial^2 u}{\partial x^2}-\frac{\partial^2 u}{\partial y^2} x22uy22u在新的坐标系下对应的表达式。
{ s = x + y t = x − y \left\{ \begin{aligned} s & = & x+y \\ t & = & x-y \\ \end{aligned} \right. {st==x+yxy
这道偏导数的题实质上是利用中间变量求导,在书写的过程中容易出错,写一个解答过程,也算是一次markdown语法编辑的练习了


对于变换坐标系:

∂ s ∂ x = ∂ t ∂ x = 1 , \begin{aligned} \frac{\partial s}{\partial x}=\frac{\partial t}{\partial x} &=1 , \end{aligned} xs=xt=1,
∂ s ∂ y = 1 , ∂ t ∂ y = − 1. \begin{aligned} \frac{\partial s}{\partial y}&=1 ,\\ \frac{\partial t}{\partial y}&=-1. \end{aligned} ysyt=1,=1.


∂ u ∂ x = ∂ u ∂ s ∂ s ∂ x + ∂ u ∂ t ∂ t ∂ x = ∂ u ∂ s + ∂ u ∂ t . \begin{aligned} \frac{\partial u}{\partial x} &=\frac{\partial u}{\partial s}\frac{\partial s}{\partial x}+\frac{\partial u}{\partial t}\frac{\partial t}{\partial x} \\ &=\frac{\partial u}{\partial s}+\frac{\partial u}{\partial t}. \end{aligned} xu=suxs+tuxt=su+tu.

∂ 2 u ∂ x 2 = ∂ ∂ x ( ∂ u ∂ x ) = ∂ ∂ x ( ∂ u ∂ s + ∂ u ∂ t ) = ∂ ∂ x ∂ u ∂ s + ∂ ∂ x ∂ u ∂ t = ∂ ∂ s ∂ u ∂ s ∂ s ∂ x + ∂ ∂ t ∂ u ∂ s ∂ t ∂ x + ∂ ∂ s ∂ u ∂ t ∂ s ∂ x + ∂ ∂ t ∂ u ∂ t ∂ t ∂ x = ∂ u ∂ s 2 + 2 ∂ 2 u ∂ s ∂ t + ∂ u ∂ t 2 . \begin{aligned} \frac{\partial ^2u}{\partial x^2}&=\frac{\partial }{\partial x}(\frac{\partial u}{\partial x}) \\ &=\frac{\partial }{\partial x}(\frac{\partial u}{\partial s}+\frac{\partial u}{\partial t})\\ &=\frac{\partial }{\partial x}\frac{\partial u}{\partial s}+\frac{\partial }{\partial x}\frac{\partial u}{\partial t}\\ &=\frac{\partial }{\partial s}\frac{\partial u}{\partial s}\frac{\partial s}{\partial x}+\frac{\partial }{\partial t}\frac{\partial u}{\partial s}\frac{\partial t}{\partial x}+\frac{\partial }{\partial s}\frac{\partial u}{\partial t}\frac{\partial s}{\partial x}+\frac{\partial }{\partial t }\frac{\partial u}{\partial t}\frac{\partial t}{\partial x}\\ &=\frac{\partial u}{\partial s^2 }+2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }.\\ \end{aligned} x22u=x(xu)=x(su+tu)=xsu+xtu=ssuxs+tsuxt+stuxs+ttuxt=s2u+2st2u+t2u.


由于代码编辑量较大…所以同理可得
算了,还是老老实实写完整过程,因为中间出现的负号容易出错…

∂ u ∂ y = ∂ u ∂ s ∂ s ∂ y + ∂ u ∂ t ∂ t ∂ y = ∂ u ∂ s − ∂ u ∂ t . \begin{aligned} \frac{\partial u}{\partial y} &=\frac{\partial u}{\partial s}\frac{\partial s}{\partial y}+\frac{\partial u}{\partial t}\frac{\partial t}{\partial y} \\ &=\frac{\partial u}{\partial s}-\frac{\partial u}{\partial t}. \end{aligned} yu=suys+tuyt=sutu.

∂ 2 u ∂ y 2 = ∂ ∂ y ( ∂ u ∂ y ) = ∂ ∂ y ( ∂ u ∂ s − ∂ u ∂ t ) = ∂ ∂ y ∂ u ∂ s − ∂ ∂ y ∂ u ∂ t = ∂ ∂ s ∂ u ∂ s ∂ s ∂ y + ∂ ∂ t ∂ u ∂ s ∂ t ∂ y − ∂ ∂ s ∂ u ∂ t ∂ s ∂ y − ∂ ∂ t ∂ u ∂ t ∂ t ∂ y = ∂ u ∂ s 2 − 2 ∂ 2 u ∂ s ∂ t + ∂ u ∂ t 2 . \begin{aligned} \frac{\partial ^2u}{\partial y^2}&=\frac{\partial }{\partial y}(\frac{\partial u}{\partial y}) \\ &=\frac{\partial }{\partial y}(\frac{\partial u}{\partial s}-\frac{\partial u}{\partial t})\\ &=\frac{\partial }{\partial y}\frac{\partial u}{\partial s}-\frac{\partial }{\partial y}\frac{\partial u}{\partial t}\\ &=\frac{\partial }{\partial s}\frac{\partial u}{\partial s}\frac{\partial s}{\partial y}+\frac{\partial }{\partial t}\frac{\partial u}{\partial s}\frac{\partial t}{\partial y}-\frac{\partial }{\partial s}\frac{\partial u}{\partial t}\frac{\partial s}{\partial y}-\frac{\partial }{\partial t }\frac{\partial u}{\partial t}\frac{\partial t}{\partial y}\\ &=\frac{\partial u}{\partial s^2 }-2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }.\\ \end{aligned} y22u=y(yu)=y(sutu)=ysuytu=ssuys+tsuytstuysttuyt=s2u2st2u+t2u.

∂ 2 u ∂ y 2 = ∂ u ∂ s 2 − 2 ∂ 2 u ∂ s ∂ t + ∂ u ∂ t 2 . \begin{aligned} \frac{\partial ^2u}{\partial y^2}&=\frac{\partial u}{\partial s^2 }-2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }. \end{aligned} y22u=s2u2st2u+t2u.
则在变换坐标系下有:
{ ∂ 2 u ∂ x 2 = ∂ u ∂ s 2 + 2 ∂ 2 u ∂ s ∂ t + ∂ u ∂ t 2 , ∂ 2 u ∂ y 2 = ∂ u ∂ s 2 − 2 ∂ 2 u ∂ s ∂ t + ∂ u ∂ t 2 . \left\{ \begin{aligned} \frac{\partial ^2u}{\partial x^2} & = \frac{\partial u}{\partial s^2 }+2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }, \\ \frac{\partial ^2u}{\partial y^2} & = \frac{\partial u}{\partial s^2 }-2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }. \\ \end{aligned} \right. x22uy22u=s2u+2st2u+t2u,=s2u2st2u+t2u.
综合上述计算结果可得:

∂ 2 u ∂ x 2 − ∂ 2 u ∂ y 2 = 4 ∂ 2 u ∂ s ∂ t . \begin{aligned} \frac{\partial ^2u}{\partial x^2}-\frac{\partial ^2u}{\partial y^2}&=4\frac{\partial ^2u}{\partial s \partial t} . \end{aligned} x22uy22u=4st2u.

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐