AAAI 2024 时序和时空论文总结
AAAI今年共有12100篇投稿(Main Technical Track),有9862篇经过严格审稿,共录取了2342篇论文,录取率23.75%。12月19日,为AAAI 2024camera-ready的截止日期,AAAI 24效率很高,也很快放出了录取论文的标题和作者。AAAI 2024将在2024年2月20日到27日于加拿大温哥华举行。本文总结了2024 AAAI上有关包括时间序列预测,分
AAAI今年共有12100篇投稿(Main Technical Track),有9862篇经过严格审稿,共录取了2342篇论文,录取率23.75%。
12月19日,为AAAI 2024camera-ready的截止日期,AAAI 24效率很高,也很快放出了录取论文的标题和作者。
AAAI 2024将在2024年2月20日到27日于加拿大温哥华举行。
本文总结了2024 AAAI上有关时空数据(spatial-temporal)包括交通预测,轨迹表示学习,信控优化等工作以及时间序列(time series)数据包括时间序列预测,分类,异常检测,因果发现等相关论文。
欢迎关注公众号“时空探索之旅”
(如果对您有用,还请您点赞,收藏和转发。感谢您的支持!)
时间序列(time series)
论文:MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting
作者:Cai, Wanlin; Liang, Yuxuan; LIU, XIANGGEN; Feng, Jianshuai; Wu, Yuankai*
关键词:多元时间序列预测,相关性
论文:HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate Time Series Forecasting
作者:Huang, Qihe*; Shen, Lei; Zhang, Ruixin; Cheng, Jiahuan; Ding, Shouhong; Zhou, Zhengyang ; Wang, Yang
关键词:多层级,多元时间序列预测
论文:Energy-efficient Streaming Time Series Classification with Attentive Power Iteration
作者:Huang, Hao*; Shah, Tapan; Evans, Scott; Yoo, Shinjae
关键词:时间序列分类
论文:Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting
作者:Li, Yanhong; Xu, Jack; Anastasiu, David C*
关键词:长时预测
论文:Latent Diffusion Transformer for Probabilistic Time Series Forecasting
作者:Feng, Shibo*; Miao, Chunyan; Zhang, Zhong; Zhao, Peilin
关键词:扩散Transfomer,概率时间预测
论文:Graph Contextual Contrasting for Multivariate Time Series Classification
作者:Wang, Yucheng*; Xu, Yuecong; Yang, Jianfei; Wu, Min; Li, Xiaoli; Xie, Lihua; Chen, Zhenghua
关键词:多元时间序列分类,图对比
论文:U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting
作者:Ma, Xiang; Li, Xuemei; Fang, Lexin; Zhao, Tianlong; Zhang, Caiming*
关键词:平稳性校正,时间序列预测
论文:GraFITi: Graphs for Forecasting Irregularly Sampled Time Series
作者:Yalavarthi, Vijaya Krishna*; Madhusudhanan, Kiran; Scholz, Randolf; Ahmed, Nourhan; Burchert, Johannes; Jawed, Shayan; Born, Stefan; Schmidt-Thieme, Lars
关键词:不规则时间序列,图(Graph)
论文:IVP-VAE: Modeling EHR Time Series with Initial Value Problem Solvers
作者:Xiao, Jingge*; Basso, Leonie; Nejdl, Wolfgang; Ganguly, Niloy; Sikdar, Sandipan
关键词:时间序列建模(EHR)
论文:Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting
作者:Wang, Muyao*; Chen, Wenchao; Chen, Bo
关键词:非平稳性,多层级,多元时间序列
论文:Cross-Domain Contrastive Learning for Time Series Clustering
作者:Peng, Furong*; jike, luo; Lu, Xuan; Wang, Sheng; Li, Feijiang
关键词:跨域对比学习,时间序列聚类
论文:SimPSI: A Simple Strategy to Preserve Spectral Information in Time Series Data Augmentation
作者:Ryu, Hyun*; Yoon, Sunjae; Yoon, Hee Suk; Yoon, Eunseop; Yoo, Chang D.
关键词:谱域、时间序列数据增强
论文:TimesURL: Self-supervised Contrastive Learning for Universal Time Series Representation Learning
作者:Liu, jiexi*; Chen, Songcan
关键词:自监督,对比学习,时间序列表示学习
论文:CGS-Mask: Making Time Series Predictions Intuitive for All
作者:Lu, Feng; Li, Wei*; Sun, Yifei; Song, Cheng; Yufei, Ren; Zomaya, Albert
关键词:时间序列预测,可解释性(intuitive,不知道是可解释还是很简单的模型)
论文:Diffusion Language-Shapelets for Semisupervised Time-series Classification
作者:Liu, Zhen; Pei, Wenbin; Lan, Disen; Ma, Qianli*
关键词:半监督,Shapelet,时间序列分类
论文:CUTS+: High-dimensional Causal Discovery from Irregular Time-series
作者:Cheng, Yuxiao*; Li, Lianglong; Xiao, Tingxiong; li, zongren; Suo, Jinli; He, Kunlun; Dai, Qionghai
关键词:因果发现,不规则时间序列
论文:When Model Meets New Normals: Test-time Adaptation for Unsupervised Time-series Anomaly Detection
作者:Kim, Dongmin*; Park, Sunghyun ; Choo, Jaegul
关键词:无监督,Test-time Adaptation(TTA),时间序列异常检测
时空数据(spatial-temporal data)
论文:KGTS: Contrastive Trajectory Similarity Learning over Prompt Knowledge Graph Embedding
作者:Chen, Zhen; Zhang, Dalin; Feng, Shanshan; Chen, Kaixuan; Chen, Lisi; Han, Peng; Shang, Shuo*
关键词:对比学习,轨迹相似度,知识图谱,表示学习
论文:Hawkes-enhanced Spatial-Temporal Hypergraph Contrastive Learning based on Criminal Correlations
作者:Liang, Ke*; Zhou, Sihang; Liu, Meng; Liu, Yue; Tu, Wenxuan; Zhang, Yi; Fang, Liming; Liu, Zhe; Liu, Xinwang
关键词:犯罪预测,时空超图,对比学习
论文:Spatial-Temporal Interplay in Human Mobility: A Hierarchical Reinforcement Learning Approach with Hypergraph Representation
作者:Zhang, Zhaofan; Xiao, Yanan; Jiang, Lu; Yang, Dingqi; Yin, Minghao; Wang, Pengyang*
关键词:人类移动性,超图,多层次,强化学习
论文:Fully-Connected Spatial-Temporal Graph for Multivariate Time Series Data
作者:Wang, Yucheng*; Xu, Yuecong; Yang, Jianfei; Wu, Min; Li, Xiaoli; Xie, Lihua; Chen, Zhenghua
关键词:时空图,多元时间序列
论文:Towards Streaming Spatial-Temporal Graph Learning: A Decoupled Perspective
作者:Wang, Binwu; Wang, Pengkun; Zhang, Yudong; Wang, Xu; Zhou, Zhengyang ; Bai, Lei; Wang, Yang*
关键词:时空图,解耦
论文:Earthfarsser: Versatile Spatio-Temporal Dynamical Systems Modeling in One Model
作者:Wu, Hao*; Liang, Yuxuan; Xiong, Wei; Zhou, Zhengyang ; Huang, Wei; wang, shilong; wang, kun
关键词:时空动态系统,气象预测
论文:CI-STHPAN: Pre-Trained Attention Network for Stock Selection with Channel-Independent Spatio-Temporal Hypergraph
作者:Xia, Hongjie; Ao, Huijie; Li, Long; Liu, Yu; Liu, Sen; Ye, Guangnan*; Chai, Hongfeng
关键词:预训练,通道独立(CI),时空超图
论文:Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting
作者:Kong, Weiyang; Guo, Ziyu; Liu, Yubao*
关键词:交通预测,时空图神经网络
论文:Prompt to transfer: Sim-to-real Transfer for Traffic Signal Control with Prompt Learning
作者:Da, Longchao; Gao, Mingquan; Wei, Hua*; Da, Longchao; mei, hao
关键词:提示学习,信控优化,sim2real
论文:Urban Region Embedding via Multi-View Contrastive Prediction
作者:Li, Zechen; Huang, Weiming; Zhao, Kai; Yang, Min; Gong, Yongshun; Chen, Meng*
关键词:表示学习,对比学习
论文:Successive POI Recommendation via Brain-inspired Spatiotemporal Aware Representation
作者:Ma, Gehua ; Wang, He; Zhao, Jingyuan; Yan, Rui; Tang, Huajin*
关键词:POI推荐,脑启发式
论文:Learning Time Slot Preferences via Mobility Tree for Next POI Recommendation
作者:Huang, Tianhao Alex; Pan, Xuan; Cai, Xiangrui*; ZHANG, Ying; Yuan, Xiaojie
关键词:POI推荐
相关链接
AAAI 2024 Main Technical Track所有论文:https://aaai.org/wp-content/uploads/2023/12/Main-Track.pdf(这是个pdf,手机打开会下载,PC浏览器打开友好)
NeurIPS 2023 时间序列(Time Series)论文总结
ICLR 2024 时间序列(Time Series)高分论文
欢迎关注公众号“时空探索之旅”
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)