datax安装部署与使用(进阶介绍二)
从0到一,部署,使用,以及案列
安装部署
下载DataX安装包并上传到/opt/software
下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
解压datax.tar.gz到/opt/module
自检,执行如下命令
出现如下内容,则表示安装成功
DataX使用
DataX任务提交命令
DataX的使用十分简单,用户只需根据自己同步数据的数据源和目的地选择相应的Reader和Writer,并将Reader和Writer的信息配置在一个json文件中,然后执行如下命令提交数据同步任务即可
DataX配置文件格式
可以使用如下命名查看DataX配置文件模板。
配置文件模板如下,json最外层是一个job,job包含setting和content两部分,其中setting用于对整个job进行配置,content用户配置数据源和目的地
Reader和Writer的具体参数可参考官方文档,地址如下
https://github.com/alibaba/DataX/blob/master/README.md
同步MySQL数据到HDFS案例
案例要求:同步gmall数据库中base_province表数据到HDFS的/base_province目录
需求分析:要实现该功能,需选用MySQLReader和HDFSWriter,MySQLReader具有两种模式分别是TableMode和QuerySQLMode,前者使用table,column,where等属性声明需要同步的数据;后者使用一条SQL查询语句声明需要同步的数据
下面使用一种模式进行演示
MySQLReader之TableMode
编写配置文件
创建配置文件base_province.json
配置文件内容如下
配置文件说明
注意事项:
HFDS Writer并未提供nullFormat参数:也就是用户并不能自定义null值写到HFDS文件中的存储格式。默认情况下,HFDS Writer会将null值存储为空字符串(''),而Hive默认的null值存储格式为\N。所以后期将DataX同步的文件导入Hive表就会出现问题。
解决该问题的方案有两个:
一是修改DataX HDFS Writer的源码,增加自定义null值存储格式的逻辑,可参考记Datax3.0解决MySQL抽数到HDFSNULL变为空字符的问题_datax nullformat-CSDN博客。
二是在Hive中建表时指定null值存储格式为空字符串(''),例如:
DROP TABLE IF EXISTS base_province;
CREATE EXTERNAL TABLE base_province
(
`id` STRING COMMENT '编号',
`name` STRING COMMENT '省份名称',
`region_id` STRING COMMENT '地区ID',
`area_code` STRING COMMENT '地区编码',
`iso_code` STRING COMMENT '旧版ISO-3166-2编码,供可视化使用',
`iso_3166_2` STRING COMMENT '新版IOS-3166-2编码,供可视化使用'
) COMMENT '省份表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
NULL DEFINED AS ''
LOCATION '/base_province/';
Setting参数说明
提交任务
在HDFS创建/base_province目录
进入DataX根目录
cd /opt/module/datax
执行如下命令
python bin/datax.py job/base_province.json
查看结果
DataX打印日志
查看HDFS文件
hadoop fs -cat /base_province/* | zcat
DataX传参
通常情况下,离线数据同步任务需要每日定时重复执行,故HDFS上的目标路径通常会包含一层日期,以对每日同步的数据加以区分,也就是说每日同步数据的目标路径不是固定不变的,因此DataX配置文件中HDFS Writer的path参数的值应该是动态的。为实现这一效果,就需要使用DataX传参的功能。dataX传参的用法如下,在JSON配置文件中使用${param}引用参数,在提交任务时使用-p"-Dparam=value"传入参数值,具体示例如下
修改配置文件base_province.json
配置内容如下:
提交任务
创建目标路径
进入DataX根目录
cd /opt/module/datax
执行如下命令
python bin/datax.py -p"-Ddt=2020-06-14" job/base_province.json
查看结果
hadoop fs -ls /base_province
同步HDFS数据到MySQL案例
案例要求:同步HDFS上的/base_province目录下的数据到MySQL gmall 数据库下的test_province表。
编写配置文件:vim /opt/module/datax/job/base_province.json
配置文件如下:
配置文件说明:
Reader参数说明
注意:路径一定要改成自己的
Writer参数说明
提交任务
在MySQL中创建gmall.test_province表
进入DataX根目录
cd /opt/module/datax
执行如下命令
python bin/datax.py job/test_province.json
查看结果
DataX打印日志
查看MySQL目标表数据
DataX优化
速度控制
DataX3.0提供了包括通道(并发)、记录流、字节流三种流控模式,可以随意控制你的作业速度,让你的作业在数据库可以承受的范围内达到最佳的同步速度。
关键优化参数如下:
参数 | 说明 |
job.setting.speed.channel | 并发数 |
job.setting.speed.record | 总record限速 |
job.setting.speed.byte | 总byte限速 |
core.transport.channel.speed.record | 单个channel的record限速,默认值为10000(10000条/s) |
core.transport.channel.speed.byte | 单个channel的byte限速,默认值1024*1024(1M/s) |
注意事项:
1.若配置了总record限速,则必须配置单个channel的record限速
2.若配置了总byte限速,则必须配置单个channe的byte限速
3.若配置了总record限速和总byte限速,channel并发数参数就会失效。因为配置了总record限速和总byte限速之后,实际channel并发数是通过计算得到的:
计算公式为:
min(总byte限速/单个channel的byte限速,总record限速/单个channel的record限速)
配置示例:
{
"core": {
"transport": {
"channel": {
"speed": {
"byte": 1048576 //单个channel byte限速1M/s
}
}
}
},
"job": {
"setting": {
"speed": {
"byte" : 5242880 //总byte限速5M/s
}
},
...
}
}
内存调整
当提升DataX Job内Channel并发数时,内存的占用会显著增加,因为DataX作为数据交换通道,在内存中会缓存较多的数据。例如Channel中会有一个Buffer,作为临时的数据交换的缓冲区,而在部分Reader和Writer的中,也会存在一些Buffer,为了防止OOM等错误,需调大JVM的堆内存。
建议将内存设置为4G或者8G,这个也可以根据实际情况来调整。
调整JVM xms xmx参数的两种方式:一种是直接更改datax.py脚本;另一种是在启动的时候,加上对应的参数,如下:python datax/bin/datax.py --jvm="-Xms8G -Xmx8G" /path/to/your/job.json
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)