求旋转体体积表面积时的dx,ds问题的简单解释
说明本文并不是严格的证明,只是简单的用于理解,所以采用的曲线比较特殊,为y=xy=xy=x并且在[0,1][0,1][0,1]区间上,实际对于复杂的曲线,取微元时Δy\Delta yΔy与Δx\Delta xΔx为线性关系,即Δy=αΔx\Delta y=\alpha \Delta xΔy=αΔx,在本文中Δy=Δx\Delta y=\Delta xΔy=Δx。将区间划为nnn个小区间,对于区间[
说明
本文并不是严格的证明,只是简单的用于理解什么时候用
d
x
dx
dx什么时候用
d
s
ds
ds,所以采用的曲线比较特殊,为
y
=
x
y=x
y=x并且在
[
0
,
1
]
[0,1]
[0,1]区间上,实际对于复杂的曲线,取微元时
Δ
y
\Delta y
Δy与
Δ
x
\Delta x
Δx为线性关系,即
Δ
y
=
α
Δ
x
\Delta y=\alpha \Delta x
Δy=αΔx,在本文中
Δ
y
=
Δ
x
\Delta y=\Delta x
Δy=Δx。
将区间划为
n
n
n个小区间,对于区间
[
a
,
b
]
[a,b]
[a,b],每个区间
Δ
x
=
b
−
a
n
\Delta x=\frac{b-a}{n}
Δx=nb−a,区间的左端点为
a
+
i
n
(
b
−
a
)
a+\frac{i}{n}(b-a)
a+ni(b−a),右端点为
a
+
i
+
1
n
(
b
−
a
)
a+\frac{i+1}{n}(b-a)
a+ni+1(b−a),
i
的
取
值
为
{
0
,
1
,
2
,
.
.
.
,
n
−
1
}
i的取值为\{0,1,2,...,n-1\}
i的取值为{0,1,2,...,n−1},而对于本例中,区间范围为
[
0
,
1
]
[0,1]
[0,1],每个区间
Δ
x
=
1
n
\Delta x=\frac{1}{n}
Δx=n1,区间的左端点为
i
n
\frac{i}{n}
ni,右端点为
i
+
1
n
\frac{i+1}{n}
ni+1。
面积与弧长的情况
取一小段区间,
Δ
x
=
1
n
\Delta x=\frac{1}{n}
Δx=n1,如图所示,放大来看
面积
Δ
A
=
f
(
i
n
)
⋅
Δ
x
+
1
2
⋅
Δ
x
⋅
Δ
y
=
f
(
i
n
)
⋅
1
n
+
1
2
⋅
1
n
⋅
1
n
\Delta A=f\left( \frac{i}{n} \right) \cdot \Delta x+\frac{1}{2}\cdot \Delta x\cdot \Delta y=f\left( \frac{i}{n} \right) \cdot \frac{1}{n}+\frac{1}{2}\cdot \frac{1}{n}\cdot \frac{1}{n}
ΔA=f(ni)⋅Δx+21⋅Δx⋅Δy=f(ni)⋅n1+21⋅n1⋅n1
A
=
lim
n
→
+
∞
(
∑
i
=
0
n
−
1
(
f
(
i
n
)
⋅
1
n
)
+
1
2
⋅
1
n
⋅
1
n
⋅
n
)
=
lim
n
→
+
∞
(
1
n
⋅
∑
i
=
0
n
−
1
f
(
i
n
)
+
1
2
⋅
1
n
)
=
lim
n
→
+
∞
(
1
n
⋅
∑
i
=
0
n
−
1
f
(
i
n
)
)
+
lim
n
→
+
∞
1
2
n
\begin{aligned} A&=\underset{n\rightarrow +\infty}{\lim}\left( \sum_{i=0}^{n-1}{\left( f\left( \frac{i}{n} \right) \cdot \frac{1}{n} \right)}+\frac{1}{2}\cdot \frac{1}{n}\cdot \frac{1}{n}\cdot n \right) \\ &=\underset{n\rightarrow +\infty}{\lim}\left( \frac{1}{n}\cdot \sum_{i=0}^{n-1}{f\left( \frac{i}{n} \right)}+\frac{1}{2}\cdot \frac{1}{n} \right) \\ &=\underset{n\rightarrow +\infty}{\lim}\left( \frac{1}{n}\cdot \sum_{i=0}^{n-1}{f\left( \frac{i}{n} \right)} \right) +\underset{n\rightarrow +\infty}{\lim}\frac{1}{2n} \end{aligned}
A=n→+∞lim(i=0∑n−1(f(ni)⋅n1)+21⋅n1⋅n1⋅n)=n→+∞lim(n1⋅i=0∑n−1f(ni)+21⋅n1)=n→+∞lim(n1⋅i=0∑n−1f(ni))+n→+∞lim2n1
由于
lim
n
→
+
∞
1
2
n
=
0
\underset{n\rightarrow +\infty}{\lim}\frac{1}{2n}=0
n→+∞lim2n1=0
所以
A
=
lim
n
→
+
∞
(
1
n
⋅
∑
i
=
0
n
−
1
f
(
i
n
)
)
A=\underset{n\rightarrow +\infty}{\lim}\left( \frac{1}{n}\cdot \sum_{i=0}^{n-1}{f\left( \frac{i}{n} \right)} \right)
A=n→+∞lim(n1⋅i=0∑n−1f(ni))
由定积分的定义得
A
=
lim
n
→
+
∞
(
1
n
⋅
∑
i
=
0
n
−
1
f
(
i
n
)
)
=
∫
0
1
f
(
x
)
d
x
A=\underset{n\rightarrow +\infty}{\lim}\left( \frac{1}{n}\cdot \sum_{i=0}^{n-1}{f\left( \frac{i}{n} \right)} \right) =\int_0^1{f\left( x \right) dx}
A=n→+∞lim(n1⋅i=0∑n−1f(ni))=∫01f(x)dx
弧长
Δ S = ( Δ x ) 2 + ( Δ y ) 2 \Delta S=\sqrt{\left( \Delta x \right) ^2+\left( \Delta y \right) ^2} ΔS=(Δx)2+(Δy)2
S = lim n → + ∞ ( ∑ i = 0 n − 1 ( Δ x ) 2 + ( Δ y ) 2 ) = lim n → + ∞ ( ∑ i = 0 n − 1 1 + ( Δ y Δ x ) 2 ⋅ Δ x ) = ∫ 0 1 1 + [ f ′ ( x ) ] 2 d x = ∫ s d s \begin{aligned} S&=\underset{n\rightarrow +\infty}{\lim}\left( \sum_{i=0}^{n-1}{\sqrt{\left( \Delta x \right) ^2+\left( \Delta y \right) ^2}} \right)\\ &=\underset{n\rightarrow +\infty}{\lim}\left( \sum_{i=0}^{n-1}{\sqrt{1+\left( \frac{\Delta y}{\Delta x} \right) ^2}}\cdot \Delta x \right)\\ &=\int_0^1{\sqrt{1+\left[ f'\left( x \right) \right] ^2}dx}\\ &=\int_s{ds}\\ \end{aligned} S=n→+∞lim(i=0∑n−1(Δx)2+(Δy)2)=n→+∞lim⎝⎛i=0∑n−11+(ΔxΔy)2⋅Δx⎠⎞=∫011+[f′(x)]2dx=∫sds
旋转体体积和表面积的情况
y
=
x
y=x
y=x在区间
[
0
,
1
]
[0,1]
[0,1]上绕x轴旋转
则取一小段区间是一个圆台,图画的不是很好,但可以看出这个圆台的上底面半径为
f
(
i
n
)
f\left( \frac{i}{n} \right)
f(ni) ,下底面半径为
f
(
i
n
)
+
Δ
y
f\left( \frac{i}{n} \right)+\Delta y
f(ni)+Δy,高位
Δ
x
\Delta x
Δx。
圆台侧面积和体积公式见
公式推导——圆台的侧面积和体积
本文直接给出
体积
Δ V = 1 3 π Δ x [ f 2 ( i n ) + f ( i n ) ⋅ ( f ( i n ) + Δ y ) + ( f ( i n ) + Δ y ) 2 ] = 1 3 π Δ x [ f 2 ( i n ) + f 2 ( i n ) + f ( i n ) ⋅ Δ y + f 2 ( i n ) + 2 ⋅ f ( i n ) ⋅ Δ y + ( Δ y ) 2 ] = 1 3 π Δ x [ 3 ⋅ f 2 ( i n ) + 3 ⋅ f ( i n ) ⋅ Δ y + ( Δ y ) 2 ] = π ⋅ f 2 ( i n ) ⋅ Δ x + π ⋅ f ( i n ) ⋅ Δ x ⋅ Δ y + 1 3 π Δ x ⋅ ( Δ y ) 2 \begin{aligned} \Delta V&=\frac{1}{3}\pi \Delta x\left[ f^2\left( \frac{i}{n} \right) +f\left( \frac{i}{n} \right) \cdot \left( f\left( \frac{i}{n} \right) +\Delta y \right) +\left( f\left( \frac{i}{n} \right) +\Delta y \right) ^2 \right] \\ &=\frac{1}{3}\pi \Delta x\left[ f^2\left( \frac{i}{n} \right) +f^2\left( \frac{i}{n} \right) +f\left( \frac{i}{n} \right) \cdot \Delta y+f^2\left( \frac{i}{n} \right) +2\cdot f\left( \frac{i}{n} \right) \cdot \Delta y+\left( \Delta y \right) ^2 \right] \\ &=\frac{1}{3}\pi \Delta x\left[ 3\cdot f^2\left( \frac{i}{n} \right) +3\cdot f\left( \frac{i}{n} \right) \cdot \Delta y+\left( \Delta y \right) ^2 \right] \\ &=\pi \cdot f^2\left( \frac{i}{n} \right) \cdot \Delta x+\pi \cdot f\left( \frac{i}{n} \right) \cdot \Delta x\cdot \Delta y+\frac{1}{3}\pi \Delta x\cdot \left( \Delta y \right) ^2 \end{aligned} ΔV=31πΔx[f2(ni)+f(ni)⋅(f(ni)+Δy)+(f(ni)+Δy)2]=31πΔx[f2(ni)+f2(ni)+f(ni)⋅Δy+f2(ni)+2⋅f(ni)⋅Δy+(Δy)2]=31πΔx[3⋅f2(ni)+3⋅f(ni)⋅Δy+(Δy)2]=π⋅f2(ni)⋅Δx+π⋅f(ni)⋅Δx⋅Δy+31πΔx⋅(Δy)2
V = lim n → + ∞ [ ∑ i = 0 n − 1 ( π ⋅ f 2 ( i n ) ⋅ Δ x ) + ∑ i = 0 n − 1 ( π ⋅ f ( i n ) ⋅ Δ x ⋅ Δ y ) + ∑ i = 0 n − 1 ( 1 3 π Δ x ⋅ ( Δ y ) 2 ) ] = lim n → + ∞ ∑ i = 0 n − 1 ( π ⋅ f 2 ( i n ) ⋅ Δ x ) + lim n → + ∞ ∑ i = 0 n − 1 ( π ⋅ f ( i n ) ⋅ Δ x ⋅ Δ y ) + lim n → + ∞ ∑ i = 0 n − 1 ( 1 3 π Δ x ⋅ ( Δ y ) 2 ) \begin{aligned} V&=\underset{n\rightarrow +\infty}{\lim}\left[ \sum_{i=0}^{n-1}{\left( \pi \cdot f^2\left( \frac{i}{n} \right) \cdot \Delta x \right)}+\sum_{i=0}^{n-1}{\left( \pi \cdot f\left( \frac{i}{n} \right) \cdot \Delta x\cdot \Delta y \right)}+\sum_{i=0}^{n-1}{\left( \frac{1}{3}\pi \Delta x\cdot \left( \Delta y \right) ^2 \right)} \right] \\ &=\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \pi \cdot f^2\left( \frac{i}{n} \right) \cdot \Delta x \right)}+\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \pi \cdot f\left( \frac{i}{n} \right) \cdot \Delta x\cdot \Delta y \right)}+\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \frac{1}{3}\pi \Delta x\cdot \left( \Delta y \right) ^2 \right)} \end{aligned} V=n→+∞lim[i=0∑n−1(π⋅f2(ni)⋅Δx)+i=0∑n−1(π⋅f(ni)⋅Δx⋅Δy)+i=0∑n−1(31πΔx⋅(Δy)2)]=n→+∞limi=0∑n−1(π⋅f2(ni)⋅Δx)+n→+∞limi=0∑n−1(π⋅f(ni)⋅Δx⋅Δy)+n→+∞limi=0∑n−1(31πΔx⋅(Δy)2)
其中
∵
lim
n
→
+
∞
∑
i
=
0
n
−
1
∣
(
π
⋅
f
(
i
n
)
⋅
Δ
x
⋅
Δ
y
)
∣
≤
lim
n
→
+
∞
∑
i
=
0
n
−
1
∣
(
π
⋅
max
(
f
(
x
)
)
⋅
Δ
x
⋅
Δ
y
)
∣
\because \underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left| \left( \pi \cdot f\left( \frac{i}{n} \right) \cdot \Delta x\cdot \Delta y \right) \right|}\leq \underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left| \left( \pi \cdot \max \left( f\left( x \right) \right) \cdot \Delta x\cdot \Delta y \right) \right|}
∵n→+∞limi=0∑n−1∣∣∣∣(π⋅f(ni)⋅Δx⋅Δy)∣∣∣∣≤n→+∞limi=0∑n−1∣(π⋅max(f(x))⋅Δx⋅Δy)∣
由于分母的数量级为
n
2
,分子的数量级为
n
,所以当
n
→
+
∞
时
\text{由于分母的数量级为}n^2\text{,分子的数量级为}n\text{,所以当}n\rightarrow +\infty \text{时}
由于分母的数量级为n2,分子的数量级为n,所以当n→+∞时
lim
n
→
+
∞
∑
i
=
0
n
−
1
∣
(
π
⋅
max
(
f
(
x
)
)
⋅
Δ
x
⋅
Δ
y
)
∣
=
0
\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left| \left( \pi \cdot \max \left( f\left( x \right) \right) \cdot \Delta x\cdot \Delta y \right) \right|}=0
n→+∞limi=0∑n−1∣(π⋅max(f(x))⋅Δx⋅Δy)∣=0
∴
lim
n
→
+
∞
∑
i
=
0
n
−
1
(
π
⋅
f
(
i
n
)
⋅
Δ
x
⋅
Δ
y
)
=
0
\therefore \underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \pi \cdot f\left( \frac{i}{n} \right) \cdot \Delta x\cdot \Delta y \right)}=0
∴n→+∞limi=0∑n−1(π⋅f(ni)⋅Δx⋅Δy)=0
显然
lim
n
→
+
∞
∑
i
=
0
n
−
1
(
1
3
π
Δ
x
⋅
(
Δ
y
)
2
)
=
0
\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \frac{1}{3}\pi \Delta x\cdot \left( \Delta y \right) ^2 \right)}=0
n→+∞limi=0∑n−1(31πΔx⋅(Δy)2)=0
所以
V
=
lim
n
→
+
∞
∑
i
=
0
n
−
1
(
π
⋅
f
2
(
i
n
)
⋅
Δ
x
)
=
∫
0
1
π
x
2
d
x
V=\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \pi \cdot f^2\left( \frac{i}{n} \right) \cdot \Delta x \right)}=\int_0^1{\pi x^2dx}
V=n→+∞limi=0∑n−1(π⋅f2(ni)⋅Δx)=∫01πx2dx
表面积
Δ
A
=
π
(
f
(
i
n
)
+
f
(
i
n
)
+
Δ
y
)
Δ
s
=
π
(
2
f
(
i
n
)
+
Δ
y
)
Δ
s
\Delta A=\pi \left( f\left( \frac{i}{n} \right) +f\left( \frac{i}{n} \right) +\Delta y \right) \Delta s=\pi \left( 2f\left( \frac{i}{n} \right) +\Delta y \right) \Delta s
ΔA=π(f(ni)+f(ni)+Δy)Δs=π(2f(ni)+Δy)Δs
A
=
lim
n
→
+
∞
[
∑
i
=
0
n
−
1
(
π
(
2
f
(
i
n
)
+
Δ
y
)
Δ
s
)
]
=
lim
n
→
+
∞
∑
i
=
0
n
−
1
(
π
⋅
2
f
(
i
n
)
⋅
Δ
s
)
+
lim
n
→
+
∞
∑
i
=
0
n
−
1
(
π
⋅
Δ
y
⋅
Δ
s
)
\begin{aligned} A&=\underset{n\rightarrow +\infty}{\lim}\left[ \sum_{i=0}^{n-1}{\left( \pi \left( 2f\left( \frac{i}{n} \right) +\Delta y \right) \Delta s \right)} \right] \\ &=\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \pi \cdot 2f\left( \frac{i}{n} \right) \cdot \Delta s \right)}+\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \pi \cdot \Delta y\cdot \Delta s \right)} \end{aligned}
A=n→+∞lim[i=0∑n−1(π(2f(ni)+Δy)Δs)]=n→+∞limi=0∑n−1(π⋅2f(ni)⋅Δs)+n→+∞limi=0∑n−1(π⋅Δy⋅Δs)
其中
lim
n
→
+
∞
∑
i
=
0
n
−
1
(
π
⋅
Δ
y
⋅
Δ
s
)
=
0
\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \pi \cdot \Delta y\cdot \Delta s \right)}=0
n→+∞limi=0∑n−1(π⋅Δy⋅Δs)=0
则
A
=
lim
n
→
+
∞
∑
i
=
0
n
−
1
(
π
⋅
2
f
(
i
n
)
⋅
Δ
s
)
=
∫
s
2
π
f
(
x
)
d
s
A=\underset{n\rightarrow +\infty}{\lim}\sum_{i=0}^{n-1}{\left( \pi \cdot 2f\left( \frac{i}{n} \right) \cdot \Delta s \right)}=\int_s{2\pi f\left( x \right) ds}
A=n→+∞limi=0∑n−1(π⋅2f(ni)⋅Δs)=∫s2πf(x)ds
总结
其实不管是求面积还是体积的时候不是想当然的不考虑那一小块(这是很多人误解的地方,从而导致分不清什么时候用 d x dx dx,什么时候用 d s ds ds),而是在求定积分的时候(本质是求极限)那一部分趋于0,所以在实际计算的时候可以忽略趋于0的部分。
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)