官方文档

链接

语法

x = intlinprog(f, intcon,A,b)
x = intlinprog(f , intcon,A,b,Aeq, beq)
X=intlinprog(f , intcon, A, b, Aeq, beq,1b,ub)
x = intlinprog(f, intcon,A, b,Aeq, beq, lb, ub,x0)
x = intlinprog(f, intcon, A, b,Aeq, beq,lb, ub, x0, options)
x = intlinprog(problem)
[x, fval, exitflag,output] = intlinprog(__)

f、x、intcon、lb、beq、Ib和ub是向量,A和Aeq是矩阵
min ⁡ x f T x  subject to  { x (  intcon  )  are integers  A ⋅ x ≤ b  Aeq  x = b e q l b ≤ x ≤ u b \min _{x} f^{T} x \text { subject to }\left\{\begin{array}{l} x(\text { intcon }) \text { are integers } \\ A \cdot x \leq b \\ \text { Aeq } x=b e q \\ l b \leq x \leq u b \end{array}\right. xminfTx subject to x( intcon ) are integers Axb Aeq x=beqlbxub

x = intlinprog(f,intcon,A,b) 最小化 f'*x,使得 intcon 中的 x 分量是整数,且 A*x ≤ b。

x = intlinprog(f,intcon,A,b,Aeq,beq) 求解上述问题,同时还满足等式约束 Aeq*x = beq。如果不存在不等式,请设置 A = [] 和 b = []。

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub) 定义设计变量 x 的一组下界和上界,使解始终在 lb ≤ x ≤ ub 范围内。如果不存在等式,请设置 Aeq = [] 和 beq = []。

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0) 使用初始可行点 x0 进行优化。如果不存在边界,请设置 lb = [] 和 ub = []。

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0,options) 使用 options 中指定的优化选项执行最小化。使用 optimoptions 可设置这些选项。如果不存在初始点,请设置 x0 = []。

f-系数向量。intcon -整数约束组成的向量,就说受到约束的整数个数。A-线性不等式约束矩阵。b-线性不等式约束向量。Aeq -线性等式约束矩阵。beq -线性等式约束向量。Ib-下界。ub-上界。x0 -初始点。

实例1

min ⁡ x 8 x 1 + x 2  subject to  { x 2  is an integer  x 1 + 2 x 2 ≥ − 14 − 4 x 1 − x 2 ≤ − 33 2 x 1 + x 2 ≤ 20 \min _{x} 8x_1+x_2\text { subject to }\left\{\begin{array}{l} x_2 \text { is an integer } \\ x_1+2x_2\geq-14\\ -4x_1-x_2\leq -33\\ 2x_1+x_2 \leq 20 \end{array}\right. xmin8x1+x2 subject to x2 is an integer x1+2x2144x1x2332x1+x220
z = 8 x 1 + x 2 z=8x_1+x_2 z=8x1+x2 x 1 和 x 2 x_1和x_2 x1x2限制。
代码构建和之前的类似

f = [8;1];%确定目标函数系数
intcon = 2;%理解为两个受x受到整数限制
A = [-1,-2;
    -4,-1;
    2,1];%构造不不等式左边系数矩阵
b = [14;-33;20];%构造不等式右边矩阵
x = intlinprog(f,intcon,A,b)

在这里插入图片描述

实例2

min ⁡ x ( − 3 x 1 − 2 x 2 − x 3 )  subject to  { x 3  binary  x 1 , x 2 ≥ 0 − x 1 + x 2 + x 3 ≤ 7 4 x 1 + 2 x 2 + x 3 = 20 \min _{x} \left( {-3x_1-2x_2-x_3} \right)\text { subject to }\left\{\begin{array}{l} x_3 \text { binary } \\ x_1,x_2\geq0\\ -x_1+x_2+x_3\leq7\\ 4x_1+2x_2+x_3 = 20 \end{array}\right. xmin(3x12x2x3) subject to x3 binary x1,x20x1+x2+x374x1+2x2+x3=20

%案例二
clear all
clc
% 编写目标函数向量和由整数变量组成的向量。
f = [-3;-2;-1];
intcon = 3;
% 编写线性不等式约束。
A = [1,1,1];
b = 7;
% 编写线性等式约束。
Aeq = [4,2,1];
beq = 12;
% 编写边界约束。
lb = zeros(3,1);%等效于lb=[0;0;0]
ub = [Inf;Inf;1]; %强制x(3)为一个固定1
%调用intlinprog
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

返回结果:
在这里插入图片描述
x 2 = 5 , x 3 = 1 , x 1 = 0 x_2=5,x_3=1,x_1=0 x2=5,x3=1,x1=0时,最值为 − 12 -12 12

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐