C++11条件变量condition_variable详解
互斥量是多线程间同时访问某一共享变量时,保证变量可被安全访问的手段。但单靠互斥量无法实现线 程的同步。线程同步是指线程间需要按照预定的先后次序顺序进行的行为。C++11对这种行为也提供了 有力的支持,这就是条件变量。条件变量位于头文件condition_variable下。【官方说明文档】。拥有条件变量的线程获取互斥量。循环检查某个条件,如果条件不满足则阻塞直到条件满足;如果条件满足则向下执行。某
一、前言
互斥量是多线程间同时访问某一共享变量时,保证变量可被安全访问的手段。但单靠互斥量无法实现线 程的同步。线程同步是指线程间需要按照预定的先后次序顺序进行的行为。C++11对这种行为也提供了 有力的支持,这就是条件变量。条件变量位于头文件condition_variable下。【官方说明文档】。
条件变量使用过程:
- 拥有条件变量的线程获取互斥量。
- 循环检查某个条件,如果条件不满足则阻塞直到条件满足;如果条件满足则向下执行。
- 某个线程满足条件执行完之后调用notify_one或notify_all唤醒一个或者所有等待线程。
二、成员函数
条件变量提供了两类操作:wait和notify。这两类操作构成了多线程同步的基础。
2.1、wait函数
函数原型:
void wait (unique_lock<mutex>& lck);
template <class Predicate>
void wait (unique_lock<mutex>& lck, Predicate pred);
包含两种重载,第一种只包含unique_lock对象,另外一个Predicate 对象(等待条件),这里必须使用 unique_lock,因为wait函数的工作原理:
- 当前线程调用wait()后将被阻塞并且函数会解锁互斥量,直到另外某个线程调用notify_one或者 notify_all唤醒当前线程;一旦当前线程获得通知(notify),wait()函数也是自动调用lock(),同理不 能使用lock_guard对象。
- 如果wait没有第二个参数,第一次调用默认条件不成立,直接解锁互斥量并阻塞到本行,直到某一 个线程调用notify_one或notify_all为止,被唤醒后,wait重新尝试获取互斥量,如果得不到,线程 会卡在这里,直到获取到互斥量,然后无条件地继续进行后面的操作。
- 如果wait包含第二个参数,如果第二个参数不满足,那么wait将解锁互斥量并堵塞到本行,直到某 一个线程调用notify_one或notify_all为止,被唤醒后,wait重新尝试获取互斥量,如果得不到,线 程会卡在这里,直到获取到互斥量,然后继续判断第二个参数,如果表达式为false,wait对互斥 量解锁,然后休眠,如果为true,则进行后面的操作。
2.2、wait_for函数
函数原型:
template <class Clock, class Duration>
cv_status wait_until (unique_lock<mutex>& lck,const chrono::time_point<Clock,Duration>& abs_time);
template <class Clock, class Duration, class Predicate>
bool wait_until (unique_lock<mutex>& lck,const chrono::time_point<Clock,Duration>& abs_time,Predicate pred);
和wait不同的是,wait_for可以执行一个时间段,在线程收到唤醒通知或者时间超时之前,该线程都会 处于阻塞状态,如果收到唤醒通知或者时间超时,wait_for返回,剩下操作和wait类似。
2.3、wait_until函数
函数原型:
template <class Clock, class Duration>
cv_status wait_until (unique_lock<mutex>& lck,const chrono::time_point<Clock,Duration>& abs_time);
template <class Clock, class Duration, class Predicate>
bool wait_until (unique_lock<mutex>& lck,const chrono::time_point<Clock,Duration>& abs_time,Predicate pred);
与wait_for类似,只是wait_until可以指定一个时间点,在当前线程收到通知或者指定的时间点超时之 前,该线程都会处于阻塞状态。如果超时或者收到唤醒通知,wait_until返回,剩下操作和wait类似 。
2.4、notify_one函数
函数原型:
void notify_one() noexcept;
解锁正在等待当前条件的线程中的一个,如果没有线程在等待,则函数不执行任何操作,如果正在等待的线程多于一个,则唤醒的线程是不确定的。随机唤醒。
2.5、notify_all函数
函数原型:
void notify_all() noexcept;
解锁正在等待当前条件的所有线程,如果没有正在等待的线程,则函数不执行任何操作。
三、使用示例
使用条件变量实现一个同步队列,同步队列作为一个线程安全的数据共享区,经常用于线程之间数据读取。
(sync_queue.h)
#ifndef SYNC_QUEUE_H
#define SYNC_QUEUE_H
#include <list>
#include <mutex>
#include <iostream>
#include <thread>
#include <condition_variable>
template<typename T>
class SyncQueue
{
private:
std::list<T> _queue; //缓冲区
std::mutex _mutex; //互斥量和条件变量结合起来使用
std::condition_variable_any _notEmpty; //不为空的条件变量
std::condition_variable_any _notFull; //没有满的条件变量
int _maxSize; //同步队列最大的size
bool IsFull() const
{
return _queue.size() ==_maxSize;
}
bool IsEmpty() const
{
return _queue.empty();
}
public:
SyncQueue(int maxSize):_maxSize(maxSize)
{
}
void Put(const T& x)
{
std::lock_guard<std::mutex> locker(_mutex);
while(IsFull())
{
std::cout << "full wait..." << std::endl;
_notFull.wait(_mutex);
}
_queue.push_back(x);
_notEmpty.notify_one();
}
void Take(T& x)
{
std::lock_guard<std::mutex> locker(_mutex);
while (IsEmpty())
{
std::cout << "empty wait.." << std::endl;
_notFull.notify_one();
_notEmpty.wait(_mutex);
}
x=_queue.front();
_queue.pop_front();
_notFull.notify_one();
}
bool Empty()
{
std::lock_guard<std::mutex> locker(_mutex);
return _queue.empty();
}
bool Full()
{
std::lock_guard<std::mutex> locker(_mutex);
return _queue.size() == _maxSize;
}
size_t Size()
{
std::lock_guard<std::mutex> locker(_mutex);
return _queue.size();
}
int Count()
{
return _queue.size();
}
};
#endif
#include <iostream>
#include "sync_queue.h"
using namespace std;
SyncQueue<int> syncQueue(5);
void PutDatas()
{
for (int i = 0; i < 20; ++i)
{
syncQueue.Put(888);
}
std::cout << "PutDatas finish\n";
}
void TakeDatas()
{
int x = 0;
for (int i = 0; i < 20; ++i)
{
syncQueue.Take(x);
std::cout << x << std::endl;
}
std::cout << "TakeDatas finish\n";
}
int main(void)
{
std::thread t1(PutDatas);
std::thread t2(TakeDatas);
t1.join();
t2.join();
std::cout << "main finish\n";
return 0;
}
代码中用到了std::lock_guard,它利用RAII机制可以保证安全释放mutex。
std::lock_guard<std::mutex> locker(_mutex);
while(IsFull())
{
std::cout << "full wait..." << std::endl;
_notFull.wait(_mutex);
}
可以改为:
std::lock_guard<std::mutex> locker(_mutex);
_notFull.wait(_mutex, [this] {return !IsFull();});
两种写法效果是一样的,但是后者更简洁,条件变量会先检查判断式是否满足条件,如果满足条件则重 新获取mutex,然后结束wait继续往下执行;如果不满足条件则释放mutex,然后将线程置为waiting状 态继续等待。
这里需要注意的是,wait函数中会释放mutex,而lock_guard这时还拥有mutex,它只会在出了作用域 之后才会释放mutex,所以这时它并不会释放,但执行wait时会提前释放mutex。
从语义上看这里使用lock_guard会产生矛盾,但是实际上并不会出问题,因为wait提前释放锁之后会处 于等待状态,在被notify_one或者notify_all唤醒后会先获取mutex,这相当于lock_guard的mutex在 释放之后又获取到了,因此,在出了作用域之后lock_guard自动释放mutex不会有问题。
这里应该用unique_lock,因为unique_lock不像lock_guard一样只能在析构时才释放锁,它可以随时释 放锁,因此在wait时让unique_lock释放锁从语义上更加准确。
使用unique_lock和condition_variable改写为用等待一个判 断式的方法来实现一个简单的队列:
(vim sync_queue2.h)
#ifndef SIMPLE_SYNC_QUEUE_H
#define SIMPLE_SYNC_QUEUE_H
#include <thread>
#include <condition_variable>
#include <mutex>
#include <list>
#include <iostream>
template<typename T>
class SimpleSyncQueue
{
public:
SimpleSyncQueue(){}
void Put(const T& x)
{
std::lock_guard<std::mutex> locker(_mutex);
_queue.push_back(x);
_notEmpty.notify_one();
}
void Take(T& x)
{
std::unique_lock<std::mutex> locker(_mutex);
_notEmpty.wait(locker, [this]{return !_queue.empty(); });
x = _queue.front();
_queue.pop_front();
}
bool Empty()
{
std::lock_guard<std::mutex> locker(_mutex);
return _queue.empty();
}
size_t Size()
{
std::lock_guard<std::mutex> locker(_mutex);
return _queue.size();
}
private:
std::list<T> _queue;
std::mutex _mutex;
std::condition_variable _notEmpty;
};
#endif // SIMPLE_SYNC_QUEUE_H
(main.cpp)
#include <iostream>
#include "sync_queue2.h"
using namespace std;
SimpleSyncQueue<int> syncQueue;
void PutDatas()
{
for (int i = 0; i < 20; ++i)
{
syncQueue.Put(888);
}
std::cout << "PutDatas finish\n";
}
void TakeDatas()
{
int x = 0;
for (int i = 0; i < 20; ++i)
{
syncQueue.Take(x);
std::cout << x << std::endl;
}
std::cout << "TakeDatas finish\n";
}
int main(void)
{
std::thread t1(PutDatas);
std::thread t2(TakeDatas);
t1.join();
t2.join();
std::cout << "main finish\n";
return 0;
}
总结
条件变量是一个对象,能够在通知恢复之前阻止调用线程。它使用在调用其等待函数之一时锁定线程。线程将保持阻塞状态,直到被另一个调用同一对象上的通知函数的线程唤醒。
后言
本专栏知识点是通过<零声教育>的系统学习,进行梳理总结写下文章,对c/c++linux系统提升感兴趣的读者,可以点击链接查看详细的服务:C/C++服务器开发。
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)