误符号率

最佳基带传输系统(匹配滤波),信道误符号率(symbol error rate) 的最终表达式。
符号能量 E s E_s Es 与 比特能量 E b E_b Eb 之间的关系是 E s = E b log ⁡ 2 M E_s=E_b\log_2 M Es=Eblog2M

PAM,ASK

对于PAM 或ASK星座映射,星座大小为 M M M,两个星座的最小距离为
d min ⁡ = 12 log ⁡ 2 M M 2 − 1 E b d_{\min} = \sqrt{\frac{12\log_2 M}{M^2-1}E_b} dmin=M2112log2MEb
P e = 2 ( 1 − 1 M ) Q ( d min ⁡ 2 N 0 ) = ( 1 − 1 M ) e r f c ( d 2 σ ) = ( 1 − 1 M ) e r f c [ 3 M 2 − 1 ⋅ E b log ⁡ 2 M N 0 ] P_e=2\left(1-\frac{1}{M}\right)Q\left(\frac{d_{\min}}{\sqrt{2N_0}}\right)= \left(1-\frac{1}{M}\right)\mathrm{erfc}\left(\frac{d}{\sqrt{2}\sigma}\right)=\left(1-\frac{1}{M}\right)\mathrm{erfc}\left[\sqrt{\frac{3}{M^2-1}\cdot\frac{E_b\log_2M}{N_0}}\right] Pe=2(1M1)Q(2N0 dmin)=(1M1)erfc(2 σd)=(1M1)erfc[M213N0Eblog2M ]
特别的,当 M = 2 M=2 M=2, bpsk

P b = 1 2 e r f c ( E / N 0 ) P_b = \frac{1}{2}\mathrm{erfc}(\sqrt{E/N_0}) Pb=21erfc(E/N0 )

QAM

对于QAM,可以相当于两路PAM信号,因此有
P e , M − QAM = 1 − ( 1 − P e , M − PAM ) 2 = 2 P e , M − PAM ( 1 − 1 2 P e , M − PAM ) ≈ 2 P e , M − PAM = 2 ( 1 − 1 M ) e r f c [ 3 M − 1 ⋅ 0.5 E b log ⁡ 2 M N 0 ] \begin{equation} \begin{aligned} P_{e,M-\text{QAM}} &= 1-(1-P_{e,\sqrt{M}-\text{PAM}})^2\\ &=2P_{e,\sqrt{M}-\text{PAM}}\left(1-\frac{1}{2}P_{e,\sqrt{M}-\text{PAM}}\right)\\ &\approx 2P_{e,\sqrt{M}-\text{PAM}}\\ &=2\left(1-\frac{1}{\sqrt{M}}\right)\mathrm{erfc}\left[\sqrt{\frac{3}{M-1}\cdot\frac{0.5E_b\log_2M}{N_0}}\right] \end{aligned} \end{equation} Pe,MQAM=1(1Pe,M PAM)2=2Pe,M PAM(121Pe,M PAM)2Pe,M PAM=2(1M 1)erfc[M13N00.5Eblog2M ]

For QPSK system,BER
P e , QPSK = e r f c ( E b / N 0 ) P_{e,\textrm{QPSK}}=\mathrm{erfc}(\sqrt{E_b/N_0}) Pe,QPSK=erfc(Eb/N0 )

PSK

P e = 2 Q ( ( 2 log ⁡ 2 M ) sin ⁡ 2 ( π M ) E b N 0 ) = e r f c ( sin ⁡ ( π M ) E b log ⁡ 2 M N 0 ) P_e=2Q\left(\sqrt{(2\log_2M)\sin^2\left(\frac{\pi}{M}\right)\frac{E_b}{N_0}}\right)=\mathrm{erfc}\left(\sin\left(\frac{\pi}{M}\right)\sqrt{\frac{E_b \log_2 M }{N_0}}\right) Pe=2Q((2log2M)sin2(Mπ)N0Eb )=erfc(sin(Mπ)N0Eblog2M )

误码率

误比特率 Pb

典型的通信系统使用格雷编码调制映射,即相邻符号中对应的信息比特只相差一个比特。当一个符号被错误判决时,它通常会落入相邻的符号内,因此每个符号错误都会导致 log ⁡ 2 M \log_2 M log2M 比特种的一个比特出错,因此符号错误和比特错误(bit errior rate)之间的关系是
P b ≈ P s / log ⁡ 2 M P_b\approx P_s/\log_2M PbPs/log2M

PAM

P b , PAM = 1 log ⁡ 2 M ( 1 − 1 M ) e r f c [ 3 M 2 − 1 ⋅ E b log ⁡ 2 M N 0 ] P_{b,\text{PAM}}=\frac{1}{\log_2M}\left(1-\frac{1}{M}\right)\mathrm{erfc}\left[\sqrt{\frac{3}{M^2-1}\cdot\frac{E_b\log_2M}{N_0}}\right] Pb,PAM=log2M1(1M1)erfc[M213N0Eblog2M ]

QAM

P b , QAM = 2 log ⁡ 2 M ( 1 − 1 M ) e r f c [ 3 M − 1 ⋅ 0.5 E b log ⁡ 2 M N 0 ] P_{b,\text{QAM}}=\frac{2}{\log_2M}\left(1-\frac{1}{\sqrt{M}}\right)\mathrm{erfc}\left[\sqrt{\frac{3}{M-1}\cdot\frac{0.5E_b\log_2M}{N_0}}\right] Pb,QAM=log2M2(1M 1)erfc[M13N00.5Eblog2M ]

PSK

P b , PSK = 1 log ⁡ 2 M e r f c ( sin ⁡ ( π M ) E b log ⁡ 2 M N 0 ) P_{b,\text{PSK}}=\frac{1}{\log_2M}\mathrm{erfc}\left(\sin\left(\frac{\pi}{M}\right)\sqrt{\frac{E_b \log_2 M }{N_0}}\right) Pb,PSK=log2M1erfc(sin(Mπ)N0Eblog2M )

注意 P b , bpsk = P b , QPSK = 0.5 e r f c E b / N 0 P_{b,\text{bpsk}}=P_{b,\text{QPSK}}=0.5\mathrm{erfc}{\sqrt{E_b/N_0}} Pb,bpsk=Pb,QPSK=0.5erfcEb/N0

BER

Q(x) and erfc


Q ( x ) = 1 2 π ∫ x ∞ exp ⁡ ( − t 2 / 2 ) d t Q(x)=\frac{1}{\sqrt{2\pi}}\int_{x}^{\infty}\exp(-t^{2}/2)dt Q(x)=2π 1xexp(t2/2)dt
The Q function is related to the complementary error function, erfc, according to
Q ( x ) = 1 2 e r f c ( x 2 ) , e r f c ( x ) = 2 Q ( 2 x ) Q(x) = \frac{1}{2}\mathrm{erfc}\left(\frac{x}{\sqrt{2}}\right),\mathrm{erfc}(x)=2Q(\sqrt{2}x) Q(x)=21erfc(2 x),erfc(x)=2Q(2 x)

[1] Modulation roundup: error rates, noise, and capacity
[2] J. Proakis and M. Salehi, Digital Communications, 5th Edition, 5th edition. Boston: McGraw-Hill Education, 2007.

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐