机器学习之线性回归原理详解、公式推导(手推)、简单实例
假设一个空间中有一堆散点,线性回归的目的就是希望用一条直线,最大程度地“概括”这些散点。它不要求经过每一个散点,但是希望能考虑到每个散点的特点。按照西瓜书的例子就是,好瓜的评判标准y可以由xi表示,也就是说,fgood(x)=w1x色泽+w1x根蒂+w1x敲声+b。
目录
1. 原理详解
1.1. 线性回归
假设一个空间中有一堆散点,线性回归的目的就是希望用一条直线,最大程度地“概括”这些散点。它不要求经过每一个散点,但是希望能考虑到每个散点的特点。按照西瓜书的例子就是,好瓜的评判标准y可以由
x
i
x_i
xi表示,也就是说,
f
g
o
o
d
(
x
)
=
w
1
x
色泽
+
w
1
x
根蒂
+
w
1
x
敲声
+
b
f_{good}(x)=w_1x_{色泽}+w_1x_{根蒂}+w_1x_{敲声}+b
fgood(x)=w1x色泽+w1x根蒂+w1x敲声+b。
那么我们不难发现,线性回归需要考虑的几个问题:
- 确定系数 w i w_i wi以及偏置 b b b
- 如何确定 f g o o d ( x ) f_{good}(x) fgood(x)能很好地概括瓜的特点
1.2. 回归系数
关于这点,我们需要确定,我们算出来的回归系数一定是当前最优的结果,怎么确定呢?
- 均方误差(西瓜书)
- R^2(用于模型评估)
均方误差(MSE)
这个其实就是残差平方和的平均值。
M
S
E
=
∑
i
=
0
n
y
i
−
f
(
x
i
)
n
MSE=\frac{\sum_{i=0}^ny_i-f(x_i)}{n}
MSE=n∑i=0nyi−f(xi)
R^2
R 2 = S S R S S T = S S T − S S E S S T = 1 − S S E S S T R^2=\frac{SSR}{SST}=\frac{SST-SSE}{SST}=1-\frac{SSE}{SST} R2=SSTSSR=SSTSST−SSE=1−SSTSSE
其中,SST是总偏差平方和
S
S
T
=
∑
i
=
0
n
(
y
i
−
y
ˉ
)
2
SST=\sum_{i=0}^n(y_i-\bar y)^2
SST=i=0∑n(yi−yˉ)2
SSR是回归平方和
S
S
R
=
∑
i
=
0
n
(
f
(
x
i
)
−
y
ˉ
)
2
SSR=\sum_{i=0}^n(f(x_i)-\bar y)^2
SSR=i=0∑n(f(xi)−yˉ)2
SSE是残差平方和
S
S
E
=
∑
i
=
0
n
(
y
i
−
f
(
x
i
)
)
2
SSE=\sum_{i=0}^n(y_i-f(x_i))^2
SSE=i=0∑n(yi−f(xi))2
2. 公式推导
2.1. 单元线性回归
这里我们跟西瓜书一样采取均方误差。
计算得w与b。
2.2. 多元线性回归
多元线性回归涉及到矩阵运算。
若X为m * n的矩阵,则 X T X X^TX XTX为n * n的方阵。 X T X X^TX XTX的意义在于保持其为可逆矩阵,因为若它不可逆,则导致其行列式为0,就会导致w趋向无穷。
3. 简单实例
3.1. 实例1:一元线性回归
计算这个二元线性回归
index | x | y |
---|---|---|
1 | 6 | 2 |
2 | 8 | 1 |
3 | 10 | 0 |
4 | 14 | 2 |
5 | 18 | 0 |
我们这里采用几种解法
- 西瓜书内的公式
- 最小二乘估计w, b
- linalg直接解
# -*- coding:utf-8 -*-
# 2022.09.05
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
def task1_vis(x, y, w, b):
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x, y)
x = np.linspace(0, 20, 100)
y = w * x + b
ax.plot(x, y)
# plt.title('Pizza price plotted against diameter')
ax.set_xlabel('x', fontdict={'size': 10, 'color': 'black'})
ax.set_ylabel('y', fontdict={'size': 10, 'color': 'black'})
plt.show()
def task1_way1(x, y):
w = np.dot(y, (x - x.mean())).sum() / (sum(np.square(x)) - np.square(sum(x)) / x.shape[0])
b = sum(y - np.multiply(w, x)) / x.shape[0]
print("方法一:\t\tw:{}\tb:{}".format(w, b))
def task1_way2(x, y):
x_bar = x.mean()
y_bar = y.mean()
# 计算协方差
cov = np.multiply((x - x_bar).transpose(), (y - y_bar)).sum() / (x.shape[0] - 1)
var = np.var(x, ddof=1)
w = cov / var
# w = (y_bar - w * x_bar) / (x.shape[0])
b = y_bar - w * x_bar
print("方法二:\t\tw:{}\tb:{}".format(w, b))
def task1_way3(x, y):
from numpy.linalg import lstsq
x = np.vstack([x, [1 for i in range(x.shape[0])]])
w = lstsq(x.T, y.reshape(-1, 1))[0][0][0]
b = lstsq(x.T, y.reshape(-1, 1))[0][1][0]
print("方法三:\t\tw:{}\tb:{}".format(w, b))
return w, b
def task1():
x = np.array([6, 8, 10, 14, 18])
y = np.array([7, 9, 13, 17.5, 18])
task1_way1(x, y)
task1_way2(x, y)
w, b = task1_way3(x, y)
task1_vis(x, y, w, b)
if __name__ == '__main__':
task1()
运行结果如下
实例2: 多元线性回归
# -*- coding:utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
def task2():
from numpy.linalg import inv
X = np.array([[1, 6, 2], [1, 8, 1], [1, 10, 0], [1, 14, 2], [1, 18, 0]])
X[:, 2] = X[:, 1] * X[:, 1]
Y = np.array([[7], [9], [13], [17.5], [18]])
beita = np.dot(inv(np.dot(np.transpose(X), X)), np.dot(np.transpose(X), Y))
print(beita)
from numpy.linalg import lstsq
print(lstsq(X, Y)[0])
if __name__ == '__main__':
# task1()
task2()
3.3. 实例3:房价预测
# -*- coding:utf-8 -*-
# 2022.09.05
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
def task1_vis(x, y, w, b):
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x, y)
y = w * x + b
ax.plot(x, y, 'r')
# plt.title('Pizza price plotted against diameter')
ax.set_xlabel('x', fontdict={'size': 10, 'color': 'black'})
ax.set_ylabel('y', fontdict={'size': 10, 'color': 'black'})
plt.show()
def task1_way1(x, y):
w = np.dot(y, (x - x.mean())).sum() / (sum(np.square(x)) - np.square(sum(x)) / x.shape[0])
b = sum(y - np.multiply(w, x)) / x.shape[0]
print("方法一:\t\tw:{}\tb:{}".format(w, b))
return w, b
def task1_way2(x, y):
x_bar = x.mean()
y_bar = y.mean()
# 计算协方差
cov = np.multiply((x - x_bar).transpose(), (y - y_bar)).sum() / (x.shape[0] - 1)
var = np.var(x, ddof=1)
w = cov / var
# w = (y_bar - w * x_bar) / (x.shape[0])
b = y_bar - w * x_bar
print("方法二:\t\tw:{}\tb:{}".format(w, b))
def task1_way3(x, y):
from numpy.linalg import lstsq
x = np.vstack([x, [1 for i in range(x.shape[0])]])
w = lstsq(x.T, y.reshape(-1, 1))[0][0][0]
b = lstsq(x.T, y.reshape(-1, 1))[0][1][0]
print("方法三:\t\tw:{}\tb:{}".format(w, b))
return w, b
def task1():
x = np.array([6, 8, 10, 14, 18])
y = np.array([7, 9, 13, 17.5, 18])
task1_way1(x, y)
task1_way2(x, y)
w, b = task1_way3(x, y)
task1_vis(x, y, w, b)
def task2():
from numpy.linalg import inv
X = np.array([[1, 6, 2], [1, 8, 1], [1, 10, 0], [1, 14, 2], [1, 18, 0]])
X[:, 2] = X[:, 1] * X[:, 1]
Y = np.array([[7], [9], [13], [17.5], [18]])
beita = np.dot(inv(np.dot(np.transpose(X), X)), np.dot(np.transpose(X), Y))
print(beita)
from numpy.linalg import lstsq
print(lstsq(X, Y)[0])
def task3():
x_train = np.array([77.36, 116.74, 116.7, 100.68, 116.1, 115.81, 104.24, 106.73, 115.86])
y_train = np.array([470, 730, 760, 680, 700, 720, 700, 690, 730])
x_test = np.array([56.6, 78.4, 58, 123.5, 56.8, 77, 150.6])
w, b = task1_way1(x_train, y_train)
y_pre = x_test * w + b
print(y_pre)
task1_vis(x_train, y_train, w, b)
if __name__ == '__main__':
# task1()
# task2()
task3()
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)