近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。本文将从大模型的原理、训练过程、prompt和相关应用介绍等方面进行分析,帮助读者初步了解大模型。

大模型的定义

大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。本文讨论的大模型将以平时指向比较多的大语言模型为例来进行相关介绍。

大模型的基本原理与特点

大模型的原理是基于深度学习,它利用大量的数据和计算资源来训练具有大量参数的神经网络模型。通过不断地调整模型参数,使得模型能够在各种任务中取得最佳表现。通常说的大模型的“大”的特点体现在:参数数量庞大、训练数据量大、计算资源需求高等。很多先进的模型由于拥有很“大”的特点,使得模型参数越来越多,泛化性能越来越好,在各种专门的领域输出结果也越来越准确。现在市面上比较流行的任务有AI生成语言(ChatGPT类产品)、AI生成图片(Midjourney类产品)等,都是围绕生成这个概念来展开应用。“生成”简单来说就是根据给定内容,预测和输出接下来对应内容的能力。比如最直观的例子就是成语接龙,可以把大语言模型想象成成语接龙功能的智能版本,也就是根据最后一个字输出接下来一段文章或者一个句子。

一个基本架构,三种形式:

当前流行的大模型的网络架构其实并没有很多新的技术,还是一直沿用当前NLP领域最热门最有效的架构——Transformer结构。相比于传统的循环神经网络(RNN)和长短时记忆网络(LSTM),Transformer具有独特的注意力机制(Attention),这相当于给模型加强理解力,对更重要的词能给予更多关注,同时该机制具有更好的并行性和扩展性,能够处理更长的序列,立马成为NLP领域具有奠基性能力的模型,在各类文本相关的序列任务中取得不错的效果。


根据这种网络架构的变形,主流的框架可以分为Encoder-Decoder, Encoder-Only和Decoder-Only,其中:

1)Encoder-Only,仅包含编码器部分,主要适用于不需要生成序列的任务,只需要对输入进行编码和处理的单向任务场景,如文本分类、情感分析等,这类代表是BERT相关的模型,例如BERT,RoBERT,ALBERT等

2)Encoder-Decoder,既包含编码器也包含解码器,通常用于序列到序列(Seq2Seq)任务,如机器翻译、对话生成等,这类代表是以Google训出来T5为代表相关大模型。

3)Decoder-Only,仅包含解码器部分,通常用于序列生成任务,如文本生成、机器翻译等。这类结构的模型适用于需要生成序列的任务,可以从输入的编码中生成相应的序列。同时还有一个重要特点是可以进行无监督预训练。在预训练阶段,模型通过大量的无标注数据学习语言的统计模式和语义信息。这种方法可以使得模型具备广泛的语言知识和理解能力。在预训练之后,模型可以进行有监督微调,用于特定的下游任务(如机器翻译、文本生成等)。这类结构的代表也就是我们平时非常熟悉的GPT模型的结构,所有该家族的网络结构都是基于Decoder-Only的形式来逐步演化。


可以看到,很多NLP任务可能可以通过多种网络结果来解决,这也主要是因为NLP领域的任务和数据的多样性和复杂性,以及现代深度学习模型的灵活性和泛化能力,具体哪种结构有效,一般需要根据具体场景和数据,通过实验效果进行选择。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐