MCU_ARM-CORTEX-M0中断优先级设置及NVIC_SetPriority解读
参考资料参考:《Cortex-M0+ Devices Generic User Guide》http://www.keil.com/dd/docs/datashts/arm/cortex_m0p/r0p0/dui0662a_cortex_m0p_r0p0_dgug.pdfhttp://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/...
参考资料
参考:《Cortex-M0+ Devices Generic User Guide》
http://www.keil.com/dd/docs/datashts/arm/cortex_m0p/r0p0/dui0662a_cortex_m0p_r0p0_dgug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_generic_ug.pdf
表4.2.6
要注意的几点:
(1)Cortex-M0中NVIC-IPR共有8个寄存器,而每个寄存器管理4个IRQ中断,所以M0+的IRQ中断源最多只支持32个了,再加上16个内核中断,也就是说M0+最多就是48个中断源;
(2)优先级寄存器里面的配置值越低表明相应的中断优先级越高;
(3)每个PRIxx的8位中只有最高两位[7:6]有效,也就是说实际上M0+的优先级只有四个即0,1,2,3,其中0的优先级是最高的;
(4)这是比较容易忽略的问题,即word-accessible,也就是说这几个寄存器都只能按字操作,切记不要使用指向字节的指针只对某个单独中断的优先级进行配置。
(5)M0的嵌套相对比较简单,即只要相应中断的优先级比较高即可随时抢占比它优先级低的中断服务。
(6)内核中断,其中断优先级则由SCB模块的SCB_SHPR寄存器来管理,可参考手册4.3.7 System Handler Priority Registers,实际上我们平时常用的就是systemtick中断,其优先级配置同NVIC。
另外,如果我们不对优先级进行配置的话,则默认相应中断源的向量号越低其优先级越高。
NVIC_SetPriority解读
我们看一下一些相关定义:
stm32f0xx.h
/**
* @brief STM32F0xx Interrupt Number Definition, according to the selected device
* in @ref Library_configuration_section
*/
#define __CM0_REV 0 /*!< Core Revision r0p0 */
#define __MPU_PRESENT 0 /*!< STM32F0xx do not provide MPU */
#define __NVIC_PRIO_BITS 2 /*!< STM32F0xx uses 2 Bits for the Priority Levels */
#define __Vendor_SysTickConfig 0 /*!< Set to 1 if different SysTick Config is used */
/*!< Interrupt Number Definition */
typedef enum IRQn
{
/****** Cortex-M0 Processor Exceptions Numbers ******************************************************/
NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */
HardFault_IRQn = -13, /*!< 3 Cortex-M0 Hard Fault Interrupt */
SVC_IRQn = -5, /*!< 11 Cortex-M0 SV Call Interrupt */
PendSV_IRQn = -2, /*!< 14 Cortex-M0 Pend SV Interrupt */
SysTick_IRQn = -1, /*!< 15 Cortex-M0 System Tick Interrupt */
/****** STM32F-0 specific Interrupt Numbers *********************************************************/
WWDG_IRQn = 0, /*!< Window WatchDog Interrupt */
PVD_IRQn = 1, /*!< PVD through EXTI Line detect Interrupt */
RTC_IRQn = 2, /*!< RTC through EXTI Line Interrupt*/
FLASH_IRQn = 3, /*!< FLASH Interrupt*/
RCC_IRQn = 4, /*!< RCC Interrupt*/
EXTI0_1_IRQn = 5, /*!< EXTI Line 0 and 1 Interrupts */
EXTI2_3_IRQn = 6, /*!< EXTI Line 2 and 3 Interrupts */
EXTI4_15_IRQn = 7, /*!< EXTI Line 4 to 15 Interrupts */
TS_IRQn = 8, /*!< TS Interrupt*/
DMA1_Channel1_IRQn = 9, /*!< DMA1 Channel 1 Interrupt */
DMA1_Channel2_3_IRQn = 10, /*!< DMA1 Channel 2 and Channel 3 Interrupts */
DMA1_Channel4_5_IRQn = 11, /*!< DMA1 Channel 4 and Channel 5 Interrupts*/
ADC1_COMP_IRQn = 12, /*!< ADC1, COMP1 and COMP2 Interrupts*/
TIM1_BRK_UP_TRG_COM_IRQn = 13, /*!< TIM1 Break, Update, Trigger and Commutation Interrupts */
TIM1_CC_IRQn = 14, /*!< TIM1 Capture Compare Interrupt */
TIM2_IRQn = 15, /*!< TIM2 Interrupt */
TIM3_IRQn = 16, /*!< TIM3 Interrupt */
TIM6_DAC_IRQn = 17, /*!< TIM6 and DAC Interrupts*/
TIM14_IRQn = 19, /*!< TIM14 Interrupt */
TIM15_IRQn = 20, /*!< TIM15 Interrupt */
TIM16_IRQn = 21, /*!< TIM16 Interrupt */
TIM17_IRQn = 22, /*!< TIM17 Interrupt */
I2C1_IRQn = 23, /*!< I2C1 Interrupt */
I2C2_IRQn = 24, /*!< I2C2 Interrupt*/
SPI1_IRQn = 25, /*!< SPI1 Interrupt*/
SPI2_IRQn = 26, /*!< SPI2 Interrupt */
USART1_IRQn = 27, /*!< USART1 Interrupt*/
USART2_IRQn = 28, /*!< USART2 Interrupt */
CEC_IRQn = 30 /*!< CEC Interrupt */
} IRQn_Type;
static __INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if(IRQn < 0) {
SCB->SHP[_SHP_IDX(IRQn)] = (SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
(((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
else {
NVIC->IP[_IP_IDX(IRQn)] = (NVIC->IP[_IP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
(((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
}
core_cm0.h
/** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).*/
typedef struct
{
__IO uint32_t ISER[1]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register*/
uint32_t RESERVED0[31];
__IO uint32_t ICER[1]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register*/
uint32_t RSERVED1[31];
__IO uint32_t ISPR[1]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register*/
uint32_t RESERVED2[31];
__IO uint32_t ICPR[1]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31];
uint32_t RESERVED4[64];
__IO uint32_t IP[8]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/* Interrupt Priorities are WORD accessible only under ARMv6M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( (((uint32_t)(IRQn) ) & 0x03) * 8 )
#define _SHP_IDX(IRQn) ( ((((uint32_t)(IRQn) & 0x0F)-8) >> 2) )
#define _IP_IDX(IRQn) ( ((uint32_t)(IRQn) >> 2) )
计算方法举例,如:
NVIC_SetPriority(SPI1_IRQn, 0x25);
实际计算的是
NVIC->IP[6] = (NVIC->IP[6] & ~(0xFF << _BIT_SHIFT(IRQn))) |
(((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn));
计算中用到的一些结果(自己手动算一次就明白了):
SPI1_IRQn = 25 = 0b11001
_IP_IDX(IRQn) = 6
_BIT_SHIFT(IRQn) = (0x25&0x03)*8 = 8
~(0xFF << _BIT_SHIFT(IRQn) = ~0x0000FF00= 0xFFFF00FF
因此,(NVIC->IP[6] & ~(0xFF << _BIT_SHIFT(IRQn)))就是清零的意思,后面
(priority << (8 - __NVIC_PRIO_BITS) = 25<<6 = 0b11001000000=0x640
(priority << (8 - __NVIC_PRIO_BITS) &0xFf = 0x040
所以下面这句就是priority选最低两位, 然后左移到相应的4个IPR寄存器中的一个。比如SPI1_IRQn在第2个,
(((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)) = 0x04000
因此,NVIC->IP[6]中第25个中断的优先级是0x25的有效最低两位,即0x01
所以,下面两个设置是完全等价的
NVIC_SetPriority(SPI1_IRQn, 0x25);
NVIC_SetPriority(SPI1_IRQn, 0x01);
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)