温度传感器工作原理
参考文章:1、DS18B20传感器的原理_秀秀很久没写文章了的博客-CSDN博客_ds18b20工作原理2、常见测温传感器及电路原理图_朽木白露的博客-CSDN博客_温度传感器原理图3、温度传感器工作原理 - 知乎温度传感器工作原理温度这个物理量在很多场合需要检测,目前市场测温的方法和种类也比较多,在选用何种方法的时候,需要被考虑到的因素有:温度检测范围,精度,灵敏度,应用场合,封装形式,成本等等
参考文章:
1、DS18B20传感器的原理_秀秀很久没写文章了的博客-CSDN博客_ds18b20工作原理
2、常见测温传感器及电路原理图_朽木白露的博客-CSDN博客_温度传感器原理图
温度传感器工作原理
温度这个物理量在很多场合需要检测,目前市场测温的方法和种类也比较多,在选用何种方法的时候,需要被考虑到的因素有:温度检测范围,精度,灵敏度,应用场合,封装形式,成本等等。根据自己最近研究的内容,将温度检测的方式也可以叫电路分为模拟式和数字式的
1.数字式
常见的数字式测温芯片DS18B20,这个便宜,接口简单,所以在实验室用的还比较多。DS18B20数字温度传感器接线方便,封装后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
DS18b20不足之处在于温度下降的时候,比较缓慢。
使用它的时候,电路比较简单,如下即可:
2.模拟式
模拟式的温度传感器常见的有铂电阻,NTC,LM35三种,下面分别叙述一下三种温度传感器的工作原理。
2.1铂电阻测温
铂电阻,简称为:铂热电阻,它的阻值会随着温度的变化而改变。它有PT100和 PT1000等等系列产品,它适用于医疗、电机、工业、温度计算、卫星、气象、阻值计算等高精温度设备,应用范围非常之广泛。
说简单点,铂电阻就是测温就是根据它特有的属性,温度变化,组织变化,根据研究,温度变化,阻值变化之间存在一个关系式,所以可以用阻值的变化来表征温度的变化。具体的关系式这里不做说明。
要注意的是误差来源:
1. 在使用铂电阻测温的时候,导线的电阻会对测量的结果产生影响,所以出现了两线制、三线制、四线制这几种测温电路。
2. 铂电阻在测量温度的时候,用恒流源通过铂电阻。大家知道,电流通过一个电阻,电阻属于耗能元件,根据焦耳定律,电流越大,发热越严重。本来就是测量温度,所以为了剔除测量电路自身带来的干扰,电流要保证的1mA以下,甚至是0.5mA。
2.2 NTC
NTC是NegaTIve Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰(Mn)、钴(Co)、镍(Ni)、铝(Al)、锌(Zn)等两种或者两种以上高纯度金属氧化物为主要材料, 经共同沉淀或水热法合成的纳米粉体材料,后经球磨充分混合、等静压成型、高温烧结、半导体切片、划片、玻封烧结或环氧包封等封结工艺制成的接近理论密度结构的半导体电子陶瓷材料,这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。它具有电阻值随着温度的变化而相应变化的特性。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在100~1500000欧姆,温度系数-2%~-5%。其电阻率和材料参数(B值)随材料成分比例、烧结温度、烧结气氛和结构状不同而变化,这种具有负温度系数特征的热敏电阻具有灵敏度高、稳定性好、响应快、寿命长、成本低等特点,NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。
测温电路如下:
R14用来限流,R100用来补偿NTC电阻的非线性,能够将NTC电阻温度和电阻曲线变得线性一些。在
在软件上,利用差值法进行再一次的补偿,这样做的意义就是尽可能保证线性度的提高,简化测温的难度。
2.3 LM35
LM35 是由National Semiconductor 所生产的温度传感器,其输出电压与摄氏温标呈线性关系,转换公式如式,0 时输出为0V,每升高1℃,输出电压增加10mV。
LM35 有多种不同封装型式,外观如图所示。在常温下,LM35 不需要额外的校准处理即可达到 ±1/4℃的准确率。 其电源供应模式有单电源与正负双电源两种,其接脚如图所示,正负双电源的供电模式可提供负温度的量测;两种接法的静止电流-温度关系如图 所示,在静止温度中自热效应低(0.08℃),单电源模式在25℃下静止电流约50μA,工作电压较宽,可在4—20V的供电电压范围内正常工作非常省电。
在使用LM35的时候,为了提高温度变化电压变化的灵敏度,常常需要用到运算放大器,将温度没升高1度所带来的电压10mv电压变化进行放大。
在使用LM35需要注意的点是,在数据手册中,封装很容易弄错,如果弄错,LM35就会正负极接反,发热严重。
图中标注的的Bottom VIEW !
参考文献:
百度百科、数据手册
1.温度传感器工作原理--数字式温度传感
它采用硅工艺生产的数字式温度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式:DC=0.32+0.0047*t,t为摄氏度。输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于0.005K。测量温度范围-45到130℃,故广泛被用于高精度场合。
利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度威世传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。
2.温度传感器工作原理--分类
温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。
接下来上海威铨测控技术有限公司小编会大家一一介绍一下这几类温度传感器是如何工作的,有兴趣的童鞋们快来学习一下吧~~~~
1)热电偶
两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。
当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。
2)红外温度传感器
在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。
SMTIR9901/02是一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量,高温接点上面的黑色吸收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的,通常热电堆是使用BiSb和NiCr作为热电偶。
3)模拟温度传感器
AD590是一款电流输出型温度传感器,供电电压范围为3~30V,输出电流223μA~423μA,灵敏度为1μA/℃。当在电路中串接采样电阻R时,R两端的电压可作为输出电压。R的阻值不能取得太大,以保证AD590两端电压不低于3V。AD590输出电流信号传输距离可达到1km以上。作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制。
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)