设想一下,你现在可以使用Kimi、智谱清言、Stable Diffusion、ChatGPT等大模型或者AI工具,甚至将大模型的API嵌入到你的项目中。

然而,预训练的大模型虽然强大,但不是万能的。

比如你问大模型你写的文章信息,因没有文章语料,它就无法回答。你想让大模型回答医学问题,它可能泛泛而谈。

大模型依赖于大量互联网数据进行训练,虽然覆盖面广,但在特定情境下往往无法提供精准的答案。

为此,你需要对大模型进行改造,让它更好地满足你的需求。

用于优化和增强大模型能力的方法有:提示工程、RAG、微调、更换大模型、使用多模态大模型。

简单来说,一种方法是不改变模型本身,那就优化提示词,使用外部知识库(技术是:RAG)。一种方法是改变大模型参数(技术是:微调)。

另一种方法是,换一个大模型,或者使用多模态大模型。

下面我们一一讲解。如果你想学习如何用搭建个人知识库,微调大模型,自动化工作流程等技能,可以关注我们的AI线下工作坊,扫描文末二维码,加入福利群,月中会在群里发福利券。

1. 优化提示词

当大模型的输出内容不满足你的期望时,你可以选择优化提示词,直到优化到不能优化。

使用提示词生成答案(图来源:myscale)

依据大模型的能力、特点和局限,选择合适的提示词,能够让大模型生成更符合你特定要求的输出。

例如,你想用AI批量生成小红书文案,你可以在提示词中,详细说明目标受众、语气、文章结构,引导大模型生成小红书风格的文案。

你可以设计一系列提示词模版,这样每次都可以调用。

2. 使用外部知识库

通过检索增强生成(RAG),大模型会首先从外部知识库(比如你写的文章)中查找并收集相关信息,然后使用检索到的信息和预先存在的知识,更准确的回答问题。

RAG工作流程(图来源:Monigatti)

RAG让模型具备特定领域的知识,从而表现得更好。

外部知识库可以是公司产品说明、教程或用户指南;客服回答的问题、聊天记录;公司政策文件、标准操作程序;你写过的文章等等。

使用何种外部知识库,取决于你的目标。

使用外部知识库,最直接的方式是在AI机器人聊天页面上传文档,开启对话。比如下图是我使用kimi解读一篇论文。(官网:kimi.moonshot.cn)。你也可以尝试扣子(官网:coze.cn)

上传某本书/文章 让kimi解读

但是这种做法也有局限。如果你不想文档泄漏,或者公司里面有成千上万个文档,你就需要借助新的工具或者运用,甚至开发专用的运用。

下图是一些常用的RAG工具,这些工具在Github上Star较多。

常见RAG工具/运用(整理:mscreate)

案例:某科技公司将RAG应用于其客户支持系统,大模型通过检索公司内部的技术文档和历史支持记录,能够在几秒钟内为客户提供精准的解决方案,大大提高了客户满意度和支持效率。

3. 微调大模型

微调是指在预训练大模型的基础上,进一步在较小的、特定领域的数据集上进行训练。

微调示意(图来源:myscale)

微调有助于让大模型更满足特定需求。

例如,你想让大模型翻译地方方言更准确,那可以使用地方方言数据集微调大模型。

与RAG不同,RAG是使用外部信息增强模型的知识,而微调则是更新模型的参数,使其更好地适应你的领域或任务。

当你拥有某个领域特定的数据时,微调特别有用。

案例:如果你想构建一个法律大模型,可以用法律文件、法律案例和合同等数据微调模型。使其在法律文件分析和合同审查中表现出色,能够快速识别潜在风险和异常条款,帮助律师更高效地完成工作。

4. 换一个大模型

除了上面的方法外,你还可以换一个模型,并非一定要拘泥于使用一个模型。

模型和模型之间能力有所差别。有些模型更擅长写出流畅的中文,有的则更擅长数据分析或者长文本处理、写代码。

不同大模型公司对大模型能力的描述

成本也有所差别。当然还有其他差别。

5. 使用多模态大模型

模型不仅仅只能处理文本,还可以处理图像、音频、视频等。多模态大模型可以同时处理文本、图像等。

很多应用场景需要多模态技术支持才能实现。比如,借助多模态技术,让视力受损的人能轻松浏览网络,甚至在真实世界中充当导航。

GPT-4V展示的多模态使用例子

假设你在开发一个内容创作平台,帮助博主和营销人员制作引人入胜的文章。有了多模态大模型,用户输入提示词,AI会生成一篇精美、用吸引力的文章,还会附带相关的图片。

目前多模态大模型正在快速发展中。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐