深度学习之卷积神经网络(代码可直接运行)
深度学习之卷积神经网络图像卷积运算对图像矩阵与滤波器矩阵进行对应相乘再求和运算,转化得到新的矩阵。作用:快速定位图像中某些边缘特征英文: convolutionCNNA与B的卷积通常表示为:A*B或convolution(A,B)···· X11X12X13A=X21X22X23····X31X32X33····F=W11W12····W21W22包含竖向轮廓的区域非常亮(灰度值高)计算机根据样本
深度学习之卷积神经网络
图像卷积运算
对图像矩阵与滤波器矩阵进行对应相乘再求和运算,转化得到新的矩阵。作用:快速定位图像中某些边缘特征
英文: convolution
CNN
A与B的卷积通常表示为:A*B或convolution(A,B)
···· X11 X12 X13
A= X21 X22 X23
···· X31 X32 X33
····
F= W11 W12
···· W21 W22
包含竖向轮廓的区域非常亮(灰度值高)
计算机根据样本图片,自动寻找合适的轮廓过滤器,对新图片进行轮廓匹配
池化:按照一个固定规则对图像矩阵进行处理,将其转换为更低维度的矩阵
最大法池化(Max-pooling)
Stride为窗口滑动步长,用于池化、卷积的计算中。
保留核心信息的情况下,实现维度缩减
把卷积、池化、mlp先后连接在一起,组成卷积神经网络。
作用:
1、使部分神经元为0,防止过拟合
2、助于模型的求解
Relu函数:f(x) = max(x, 0)
转化成全连接层
卷积神经网络两大特点:
参数共享(parameter sharing):同一个特征过滤器可用于整张图片
稀疏连接(sparsity of connections):生成的特征图片每个节点只与原图片中特定节点连接
?×?=(n-f+1)×(n-f+1)
卷积运算导致的两个问题:
图像被压缩,造成信息丢失
边缘信息使用少,容易被忽略
图像填充(padding)
通过在图像各边增加像素,使其在进行卷积运算后维持原图大小
通过padding增加像素的数量,由过滤器尺寸与stride决定
在这里插入图片描述
经典的CNN模型
1、参考经典的CNN结构搭建新模型
2、使用经典的CNN模型结构对图像预处理,再建立MLP模型
经典的CNN模型:
LeNet-5
(1)6个5×5的过滤器滑动窗口为1
(2)平均值池化:2×2的滑动窗口是2
(3)16个5×5的过滤器滑动窗口为1
(4)池化:2×2的滑动窗口是2
(5)展开
(6)进行MLP模型
(7)输出10个类别
输入图像:32 X 32灰度图,1个通道(channel)训练参数:约60,000个
特点:
1、随着网络越深,图像的高度和宽度在缩小,通道数在增加
2、卷积与池化先后成对使用
AlexNet
(1)96个11×11的过滤器滑动窗口为4
(2)最大值池化:3×3的滑动窗口是2
(3)256个5×5的过滤器滑动窗口为1
(4)最大值池化:3×3的滑动窗口是2
…
(n)输出1000个类别
输入图像:227X 227X 3 RGB图,3个通道训练参数:约60,000,000个
特点:
1、适用于识别较为复杂的彩色图,可识别1000种类别
2、结构比LeNet更为复杂,使用Relu作为激活函数
学术界开始相信深度学习技术,
在计算机视觉应用中可以得到很不错的结果。
VGG
所有的卷积都是64个3×3的过滤器移动窗口是1,最大值池化:2×2的滑动窗口是2
不断重复同样的步骤
输入图像: 227 X 227X 3 RGB图,3个通道训练参数:约138,000,000个
特点:
1、所有卷积层filter 宽和高都是3,步长为1,padding 都使用same convolution;
2、所有池化层的 filter 宽和高都是2,步长都是2;
3、相比alexnet,有更多的filter用于提取轮廓信息,具有更高精准性
经典的CNN模型用于新场景
1、使用经典的CNN模型结构对图像预处理,再建立MLP模型;
(1)加载经典的CNN模型,剥除其FC层,对图像进行预处理
(2)把预处理完成的数据作为输入,分类结果为输出,建立一个mlp模型
(3)模型训练
2、参考经典的CNN结构搭建新模型
实战代码如下:
实战一:
基于dataset\training_set数据,根据提供的结构,建立CNN模型,识别图片中的猫/狗,计算预测准确率:
1.识别图片中的猫/狗、计算dataset\test_set测试数据预测准确率
2.从网站下载猫/狗图片,对其进行预测
#load the data
from keras.preprocessing.image import ImageDataGenerator#图片加载
train_datagen = ImageDataGenerator(rescale=1./255)#图片预处理
#加载出图片
training_set = train_datagen.flow_from_directory('./dataset/training_set',target_size=(50,50),batch_size=32,class_mode='binary')
#路径 像素大小(50,50) 每次选择32张图片 模式选择二分类binary
#set up the cnn model
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dense#卷积层 池化层 图像的展开
model = Sequential()
#卷积层
model.add(Conv2D(32,(3,3),input_shape=(50,50,3),activation='relu'))#32个3×3
#池化层
model.add(MaxPool2D(pool_size=(2,2)))#2×2 移动窗口是1
#卷积层
model.add(Conv2D(32,(3,3),activation='relu'))
#池化层
model.add(MaxPool2D(pool_size=(2,2)))
#flattening layer
model.add(Flatten())#转化成展开
#FC layer
model.add(Dense(units=128,activation='relu'))#隐藏层
model.add(Dense(units=1,activation='sigmoid'))#输出层
#configure the model
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
model.summary()#模型结构
Model: “sequential_2”
Layer (type) Output Shape Param #
conv2d_3 (Conv2D) (None, 48, 48, 32) 896
max_pooling2d_3 (MaxPooling2 (None, 24, 24, 32) 0
conv2d_4 (Conv2D) (None, 22, 22, 32) 9248
max_pooling2d_4 (MaxPooling2 (None, 11, 11, 32) 0
flatten_2 (Flatten) (None, 3872) 0
dense_3 (Dense) (None, 128) 495744
dense_4 (Dense) (None, 1) 129
Total params: 506,017 Trainable params: 506,017 Non-trainable params: 0
#train the model
model.fit_generator(training_set,epochs=20)#迭代20次
#accuracy on the training data
accuracy_train = model.evaluate_generator(training_set)#计算准确率
print(accuracy_train)
#accuracy on the test data
test_set = train_datagen.flow_from_directory('./dataset/test_set',target_size=(50,50),batch_size=32,class_mode='binary')
accuracy_test = model.evaluate_generator(test_set)
print(accuracy_test)
训练准确率为100%测试准确率为76%,对于二分类50%的准确率来说,此模型的还是可以来进行使用的
#load single image
from keras.preprocessing.image import load_img, img_to_array
pic_dog = 'dog.jpg'
pic_dog = load_img(pic_dog,target_size=(50,50))
pic_dog = img_to_array(pic_dog)
pic_dog = pic_dog/255
pic_dog = pic_dog.reshape(1,50,50,3)
result = model.predict_classes(pic_dog)
print(result)
[[1]]代码预测的是小狗
pic_cat = 'cat1.jpg'
pic_cat = load_img(pic_cat,target_size=(50,50))
pic_cat = img_to_array(pic_cat)
pic_cat = pic_cat/255
pic_cat = pic_cat.reshape(1,50,50,3)
result = model.predict_classes(pic_cat)
print(result)
[[0]]代码预测的是小猫
training_set.class_indices
{‘cats’: 0, ‘dogs’: 1}
# make prediction on multiple images
import matplotlib as mlp
font2 = {'family' : 'SimHei',
'weight' : 'normal',
'size' : 20,
}
mlp.rcParams['font.family'] = 'SimHei'
mlp.rcParams['axes.unicode_minus'] = False
from matplotlib import pyplot as plt
from matplotlib.image import imread
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.models import load_model
a = [i for i in range(1,10)]
fig = plt.figure(figsize=(10,10))
for i in a:
img_name = str(i)+'.jpg'
img_ori = load_img(img_name, target_size=(50, 50))
img = img_to_array(img_ori)
img = img.astype('float32')/255
img = img.reshape(1,50,50,3)
result = model.predict_classes(img)
img_ori = load_img(img_name, target_size=(250, 250))
plt.subplot(3,3,i)
plt.imshow(img_ori)
plt.title('预测为:狗狗' if result[0][0] == 1 else '预测为:猫咪')
plt.show()
从上述结果来看,只有最中间的一幅小猫的图片被预测成小狗的错误,其他预测都是准确的。
实战二:
使用VGG16的结构提取图像特征,再根据特征建立mlp模型,实现猫狗图像识别。训练/测试数据:dataset\data_vgg:
1.对数据进行分离、计算测试数据预测准确率
2.从网站下载猫/狗图片,对其进行预测
mlp模型一个隐藏层,10个神经元
#load the data
from keras.preprocessing.image import load_img,img_to_array
img_path = '1.jpg'
img = load_img(img_path,target_size=(224,224))#希望加载进来的像素大小是224*224
img = img_to_array(img)
type(img)
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
import numpy as np
model_vgg = VGG16(weights='imagenet',include_top=False)#去掉全连接层
x = np.expand_dims(img,axis=0)
x = preprocess_input(x)#可以把图片矩阵转化成可用于VGG16输入的矩阵
#特征提取
features = model_vgg.predict(x)
#flatten
features = features.reshape(1,7*7*512)
#visualize the data
%matplotlib inline
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(5,5))
img = load_img(img_path,target_size=(224,224))
plt.imshow(img)
#load image and preprocess it with vgg16 structure
#--by flare
from keras.preprocessing.image import img_to_array,load_img
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
import numpy as np
model_vgg = VGG16(weights='imagenet', include_top=False)
#define a method to load and preprocess the image
def modelProcess(img_path,model):
img = load_img(img_path, target_size=(224, 224))
img = img_to_array(img)
x = np.expand_dims(img,axis=0)
x = preprocess_input(x)
x_vgg = model.predict(x)
x_vgg = x_vgg.reshape(1,25088)
return x_vgg
#list file names of the training datasets
import os
folder = "dataset/data_vgg/cats"
dirs = os.listdir(folder)
#generate path for the images
img_path = []
for i in dirs:
if os.path.splitext(i)[1] == ".jpg":
img_path.append(i)
img_path = [folder+"//"+i for i in img_path]
#preprocess multiple images
features1 = np.zeros([len(img_path),25088])
for i in range(len(img_path)):
feature_i = modelProcess(img_path[i],model_vgg)
print('preprocessed:',img_path[i])
features1[i] = feature_i
folder = "dataset/data_vgg/dogs"
dirs = os.listdir(folder)
img_path = []
for i in dirs:
if os.path.splitext(i)[1] == ".jpg":
img_path.append(i)
img_path = [folder+"//"+i for i in img_path]
features2 = np.zeros([len(img_path),25088])
for i in range(len(img_path)):
feature_i = modelProcess(img_path[i],model_vgg)
print('preprocessed:',img_path[i])
features2[i] = feature_i
#label the results
print(features1.shape,features2.shape)
y1 = np.zeros(300)
y2 = np.ones(300)
#generate the training data
X = np.concatenate((features1,features2),axis=0)
y = np.concatenate((y1,y2),axis=0)
y = y.reshape(-1,1)
#split the training and test data
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=50)
#set up the mlp model
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(units=10,activation='relu',input_dim=25088))
model.add(Dense(units=1,activation='sigmoid'))
model.summary()
Model: “sequential_1” _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_1 (Dense) (None, 10) 250890 _________________________________________________________________ dense_2 (Dense) (None, 1) 11 ================================================================= Total params: 250,901 Trainable params: 250,901 Non-trainable params: 0 _________________________________________________________________
#configure the model
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
#train the model
model.fit(X_train,y_train,epochs=50)
from sklearn.metrics import accuracy_score
y_train_predict = model.predict_classes(X_train)
accuracy_train = accuracy_score(y_train,y_train_predict)
print(accuracy_train)
#测试准确率
y_test_predict = model.predict_classes(X_test)
accuracy_test = accuracy_score(y_test,y_test_predict)
print(accuracy_test)
训练准确率为98.57%测试准确率为97.78%,两者准确率都是非常高的,而且要比实战一中的模型预测要更加准。
img_path = 'myself_cat.jpg'
img = load_img(img_path,target_size=(224,224))
img = img_to_array(img)
x = np.expand_dims(img,axis=0)
x = preprocess_input(x)
features = model_vgg.predict(x)
features = features.reshape(1,7*7*512)
result = model.predict_classes(features)
print(result)
[[0]]
可以看出预测的结果是正确的
# coding:utf-8
import matplotlib as mlp
font2 = {'family' : 'SimHei',
'weight' : 'normal',
'size' : 20,
}
mlp.rcParams['font.family'] = 'SimHei'
mlp.rcParams['axes.unicode_minus'] = False
from matplotlib import pyplot as plt
from matplotlib.image import imread
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.models import load_model
#from cv2 import load_img
a = [i for i in range(1,10)]
fig = plt.figure(figsize=(10,10))
for i in a:
img_name = str(i)+'.jpg'
img_path = img_name
img = load_img(img_path, target_size=(224, 224))
img = img_to_array(img)
x = np.expand_dims(img,axis=0)
x = preprocess_input(x)
x_vgg = model_vgg.predict(x)
x_vgg = x_vgg.reshape(1,25088)
result = model.predict_classes(x_vgg)
img_ori = load_img(img_name, target_size=(250, 250))
plt.subplot(3,3,i)
plt.imshow(img_ori)
plt.title('预测为:狗狗' if result[0][0] == 1 else '预测为:猫咪')
plt.show()
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)