样本方差是总体方差的无偏估计
总体均值 μ=1N∑xi\mu = \frac{1}{N}\sum x_iμ=N1∑xi, 总体方差 σ2=1N∑i(xi−μ)2\sigma^2 = \frac{1}{N}\sum_i (x_i - \mu)^2σ2=N1∑i(xi−μ)2样本均值 xˉ=1n∑xi\bar{x} = \frac{1}{n}\sum x_ixˉ=n1∑xi, 样本方差 S2=1n−1∑i(xi−xˉ
总体均值 μ = 1 N ∑ x i \mu = \frac{1}{N}\sum x_i μ=N1∑xi, 总体方差 σ 2 = 1 N ∑ i ( x i − μ ) 2 \sigma^2 = \frac{1}{N}\sum_i (x_i - \mu)^2 σ2=N1∑i(xi−μ)2
样本均值 x ˉ = 1 n ∑ x i \bar{x} = \frac{1}{n}\sum x_i xˉ=n1∑xi, 样本方差 S 2 = 1 n − 1 ∑ i ( x i − x ˉ ) 2 S^2 = \frac{1}{n-1}\sum_i (x_i - \bar{x})^2 S2=n−11∑i(xi−xˉ)2
证明:
E
(
S
2
)
=
E
(
1
n
−
1
∑
i
=
1
n
(
x
i
−
x
ˉ
)
2
)
=
1
n
−
1
E
(
∑
i
=
1
n
(
x
i
−
x
ˉ
)
2
)
=
1
n
−
1
E
(
∑
i
=
1
n
(
x
i
2
−
2
x
i
x
ˉ
+
x
ˉ
2
)
)
=
1
n
−
1
E
(
∑
i
=
1
n
x
i
2
−
n
x
ˉ
2
)
=
1
n
−
1
(
∑
i
=
1
n
E
(
x
i
2
)
−
n
E
(
x
ˉ
2
)
)
=
1
n
−
1
(
∑
i
=
1
n
E
(
x
i
2
)
−
n
E
(
x
ˉ
2
)
)
\begin{array}{ll} E(S^2) &= E\left(\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2 \right) \\\\ &=\frac{1}{n-1} E\left(\sum_{i=1}^n (x_i - \bar{x})^2 \right) \\\\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n (x_i^2 - 2x_i\bar{x} + \bar{x}^2) \right) \\\\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n x_i^2 - n\bar{x}^2 \right) \\\\ &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\ &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\ \end{array}
E(S2)=E(n−11∑i=1n(xi−xˉ)2)=n−11E(∑i=1n(xi−xˉ)2)=n−11E(∑i=1n(xi2−2xixˉ+xˉ2))=n−11E(∑i=1nxi2−nxˉ2)=n−11(∑i=1nE(xi2)−nE(xˉ2))=n−11(∑i=1nE(xi2)−nE(xˉ2))
又
E
(
x
i
2
)
=
D
(
x
i
)
+
E
(
x
i
)
2
=
σ
2
+
μ
2
E(x_i^2) = D(x_i) + E(x_i)^2 = \sigma^2 + \mu^2\\
E(xi2)=D(xi)+E(xi)2=σ2+μ2
E
(
x
ˉ
2
)
=
D
(
x
ˉ
)
+
E
(
x
ˉ
)
2
=
σ
2
n
+
μ
2
E(\bar{x}^2) = D(\bar{x}) + E(\bar{x})^2 = \frac{\sigma^2}{n} + \mu^2\\
E(xˉ2)=D(xˉ)+E(xˉ)2=nσ2+μ2
所以
E
(
S
2
)
=
1
n
−
1
(
∑
i
=
1
n
E
(
x
i
2
)
−
n
E
(
x
ˉ
2
)
)
=
1
n
−
1
(
n
(
σ
2
+
μ
2
)
−
n
(
σ
2
n
+
μ
2
)
)
=
σ
2
\begin{array}{ll} E(S^2) &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\ &= \frac{1}{n-1} \left(n (\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2) \right) \\\\ &=\sigma^2 \end{array}
E(S2)=n−11(∑i=1nE(xi2)−nE(xˉ2))=n−11(n(σ2+μ2)−n(nσ2+μ2))=σ2
证毕。
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)