TASK系列解析文章

1.【Apollo学习笔记】——规划模块TASK之LANE_CHANGE_DECIDER
2.【Apollo学习笔记】——规划模块TASK之PATH_REUSE_DECIDER
3.【Apollo学习笔记】——规划模块TASK之PATH_BORROW_DECIDER
4.【Apollo学习笔记】——规划模块TASK之PATH_BOUNDS_DECIDER
5.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_PATH_OPTIMIZER
6.【Apollo学习笔记】——规划模块TASK之PATH_ASSESSMENT_DECIDER
7.【Apollo学习笔记】——规划模块TASK之PATH_DECIDER
8.【Apollo学习笔记】——规划模块TASK之RULE_BASED_STOP_DECIDER
9.【Apollo学习笔记】——规划模块TASK之SPEED_BOUNDS_PRIORI_DECIDER&&SPEED_BOUNDS_FINAL_DECIDER
10.【Apollo学习笔记】——规划模块TASK之SPEED_HEURISTIC_OPTIMIZER
11.【Apollo学习笔记】——规划模块TASK之SPEED_DECIDER
12.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_SPEED_OPTIMIZER
13.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(一)
14.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(二)

前言

Apollo星火计划学习笔记——Apollo路径规划算法原理与实践与【Apollo学习笔记】——Planning模块讲到……Stage::Process的PlanOnReferenceLine函数会依次调用task_list中的TASK,本文将会继续以LaneFollow为例依次介绍其中的TASK部分究竟做了哪些工作。由于个人能力所限,文章可能有纰漏的地方,还请批评斧正。

modules/planning/conf/scenario/lane_follow_config.pb.txt配置文件中,我们可以看到LaneFollow所需要执行的所有task。

stage_config: {
  stage_type: LANE_FOLLOW_DEFAULT_STAGE
  enabled: true
  task_type: LANE_CHANGE_DECIDER
  task_type: PATH_REUSE_DECIDER
  task_type: PATH_LANE_BORROW_DECIDER
  task_type: PATH_BOUNDS_DECIDER
  task_type: PIECEWISE_JERK_PATH_OPTIMIZER
  task_type: PATH_ASSESSMENT_DECIDER
  task_type: PATH_DECIDER
  task_type: RULE_BASED_STOP_DECIDER
  task_type: SPEED_BOUNDS_PRIORI_DECIDER
  task_type: SPEED_HEURISTIC_OPTIMIZER
  task_type: SPEED_DECIDER
  task_type: SPEED_BOUNDS_FINAL_DECIDER
  task_type: PIECEWISE_JERK_SPEED_OPTIMIZER
  # task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER
  task_type: RSS_DECIDER

本文将继续介绍LaneFollow的第9个TASK——SPEED_BOUNDS_PRIORI_DECIDER以及第12个TASK——SPEED_BOUNDS_FINAL_DECIDER

SPEED_BOUNDS_PRIORI_DECIDER功能简介

产生速度可行驶边界
在这里插入图片描述
所形成的区域是非凸的,不能用之前凸优化的方法去做,需要用动态规划的方法去做。

SPEED_BOUNDS_FINAL_DECIDER功能简介

产生速度规划边界
在这里插入图片描述在这里插入图片描述在障碍物的上方或下方确定可行使区域。

SPEED_BOUNDS_PRIORI_DECIDER相关配置

modules/planning/proto/task_config.proto

// SpeedBoundsDeciderConfig

message SpeedBoundsDeciderConfig {
  optional double total_time = 1 [default = 7.0];
  optional double boundary_buffer = 2 [default = 0.1];
  optional double max_centric_acceleration_limit = 3 [default = 2.0];
  optional double minimal_kappa = 4 [default = 0.00001];
  optional double point_extension = 5 [default = 1.0];
  optional double lowest_speed = 6 [default = 2.5];
  optional double collision_safety_range = 7 [default = 1.0];
  optional double static_obs_nudge_speed_ratio = 8;
  optional double dynamic_obs_nudge_speed_ratio = 9;
}

modules/planning/conf/planning_config.pb.txt

default_task_config: {
  task_type: ST_BOUNDS_DECIDER
  st_bounds_decider_config {
    total_time: 7.0
  }
}

SPEED_BOUNDS_FINAL_DECIDER相关配置

modules/planning/conf/planning_config.pb.txt

default_task_config: {
  task_type: SPEED_BOUNDS_FINAL_DECIDER
  speed_bounds_decider_config {
    total_time: 7.0
    boundary_buffer: 0.1
    max_centric_acceleration_limit: 2.0
    point_extension: 0.0
    lowest_speed: 2.5
    static_obs_nudge_speed_ratio: 0.6
    dynamic_obs_nudge_speed_ratio: 0.8
  }
}

SpeedBoundsFinalDecider对应的Decider同样是SpeedBoundsDecider,和SpeedBoundsPrioriDecider不同的是配置参数,从Apollo中的默认配置参数来看,SpeedBoundsFinalDecider会根据DP过程生成的决策结果和更小的boundary_buffer生成更加精确的STBoundary。

SPEED_BOUNDS_DECIDER流程

通过modules/planning/tasks/task_factory.cc,我们可以看到SPEED_BOUNDS_PRIORI_DECIDERSPEED_BOUNDS_FINAL_DECIDER按以下方式进行注册:

  task_factory_.Register(
      TaskConfig::SPEED_BOUNDS_PRIORI_DECIDER,
      [](const TaskConfig& config,
         const std::shared_ptr<DependencyInjector>& injector) -> Task* {
        return new SpeedBoundsDecider(config, injector);
      });
  task_factory_.Register(
      TaskConfig::SPEED_BOUNDS_FINAL_DECIDER,
      [](const TaskConfig& config,
         const std::shared_ptr<DependencyInjector>& injector) -> Task* {
        return new SpeedBoundsDecider(config, injector);
      });

也据此可知,SPEED_BOUNDS_PRIORI_DECIDERSPEED_BOUNDS_FINAL_DECIDER代码实现的部分在modules/planning/tasks/deciders/speed_bounds_decider/speed_bounds_decider.cc中。

Speed bounds decider 主要完成以下任务:

  1. 将障碍物映射到ST图中
  2. 创建速度限制
  3. 获取路径长度以及时间长度作为ST边界

SpeedBoundsDecider是一个继承自Decider的派生类。当task_list中运行task::Execute()时,SpeedBoundsDecider中的Process部分开始运行。

  • 输入:frame 和reference_line_info。通过计算PathData/ReferenceLine/PathDecision/PlanningStartPoint等等信息,来得到ST_Graph。

  • Process

    • 将障碍物映射到ST图中。(boundary_mapper.ComputeSTBoundary(path_decision).code() == ErrorCode::PLANNING_ERROR) {}此处将会遍历所有的障碍物去生成ST graph。当有纵向决策产生时,会对边界进行细微调整。再此之后,所有的障碍物的st_boundary会送入一个boundaries vector之中进行保存。
    • 创建速度限制。if (!speed_limit_decider.GetSpeedLimits(path_decision->obstacles(), &speed_limit).ok())此处会遍历每一个离散的路径点并且找到其速度限制。在每一个循环中,基本速度会取决于map/path_curvature/nudge obstacles等因素。对于nudge obstacles,需要找到最近的障碍物。
    • 获取路径长度以及时间长度作为搜索边界。时间长度来自于配置文件total_time: 7.0(配置部分已有介绍)
  • 输出:boundaries/speed_limit 会存储在reference_line_info的st_graph_data中。

在这里插入图片描述

Status SpeedBoundsDecider::Process(
    Frame *const frame, ReferenceLineInfo *const reference_line_info) {
  // retrieve data from frame and reference_line_info
  const PathData &path_data = reference_line_info->path_data();
  const TrajectoryPoint &init_point = frame->PlanningStartPoint();
  const ReferenceLine &reference_line = reference_line_info->reference_line();
  PathDecision *const path_decision = reference_line_info->path_decision();

  // 1. Map obstacles into st graph
  auto time1 = std::chrono::system_clock::now();
  // 构造一个STBoundary映射对象
  STBoundaryMapper boundary_mapper(
      speed_bounds_config_, reference_line, path_data,
      path_data.discretized_path().Length(), speed_bounds_config_.total_time(),
      injector_);
  // FLAGS_use_st_drivable_boundary: True to use st_drivable boundary in speed planning
  // default: false
  // 清除STBoundary
  if (!FLAGS_use_st_drivable_boundary) {
    path_decision->EraseStBoundaries();
  }
  // 将障碍物投影到ST Gragh上
  if (boundary_mapper.ComputeSTBoundary(path_decision).code() ==
      ErrorCode::PLANNING_ERROR) {
    const std::string msg = "Mapping obstacle failed.";
    AERROR << msg;
    return Status(ErrorCode::PLANNING_ERROR, msg);
  }
  auto time2 = std::chrono::system_clock::now();
  std::chrono::duration<double> diff = time2 - time1;
  ADEBUG << "Time for ST Boundary Mapping = " << diff.count() * 1000
         << " msec.";
  // 所有的障碍物的st_boundary送入到一个boundaries vector之中进行保存
  std::vector<const STBoundary *> boundaries;
  for (auto *obstacle : path_decision->obstacles().Items()) {
    const auto &id = obstacle->Id();
    const auto &st_boundary = obstacle->path_st_boundary();
    if (!st_boundary.IsEmpty()) {
      if (st_boundary.boundary_type() == STBoundary::BoundaryType::KEEP_CLEAR) {
        path_decision->Find(id)->SetBlockingObstacle(false);
      } else {
        path_decision->Find(id)->SetBlockingObstacle(true);
      }
      boundaries.push_back(&st_boundary);
    }
  }

  const double min_s_on_st_boundaries = SetSpeedFallbackDistance(path_decision);

  // 2. Create speed limit along path
  SpeedLimitDecider speed_limit_decider(speed_bounds_config_, reference_line,
                                        path_data);

  SpeedLimit speed_limit;
  if (!speed_limit_decider
           .GetSpeedLimits(path_decision->obstacles(), &speed_limit)
           .ok()) {
    const std::string msg = "Getting speed limits failed!";
    AERROR << msg;
    return Status(ErrorCode::PLANNING_ERROR, msg);
  }

  // 3. Get path_length as s axis search bound in st graph
  const double path_data_length = path_data.discretized_path().Length();

  // 4. Get time duration as t axis search bound in st graph
  const double total_time_by_conf = speed_bounds_config_.total_time();

  // Load generated st graph data back to frame
  StGraphData *st_graph_data = reference_line_info_->mutable_st_graph_data();

  // Add a st_graph debug info and save the pointer to st_graph_data for
  // optimizer logging
  auto *debug = reference_line_info_->mutable_debug();
  STGraphDebug *st_graph_debug = debug->mutable_planning_data()->add_st_graph();

  st_graph_data->LoadData(boundaries, min_s_on_st_boundaries, init_point,
                          speed_limit, reference_line_info->GetCruiseSpeed(),
                          path_data_length, total_time_by_conf, st_graph_debug);

  // Create and record st_graph debug info
  RecordSTGraphDebug(*st_graph_data, st_graph_debug);

  return Status::OK();
}

将障碍物映射到ST图中

由Process部分代码可知,(boundary_mapper.ComputeSTBoundary(path_decision).code() == ErrorCode::PLANNING_ERROR) {}此处是函数的入口。

该部分的流程示意图如下图所示:
在这里插入图片描述

ComputeSTBoundary(PathDecision* path_decision)

ComputeSTBoundary将会遍历所有的障碍物去生成ST graph。当有纵向决策产生时,会对边界进行细微调整。再此之后,所有的障碍物的st_boundary会送入一个boundaries vector之中进行保存。

Status STBoundaryMapper::ComputeSTBoundary(PathDecision* path_decision) const {
  // Sanity checks.
  CHECK_GT(planning_max_time_, 0.0);
  if (path_data_.discretized_path().size() < 2) {
    AERROR << "Fail to get params because of too few path points. path points "
              "size: "
           << path_data_.discretized_path().size() << ".";
    return Status(ErrorCode::PLANNING_ERROR,
                  "Fail to get params because of too few path points");
  }

  // Go through every obstacle.
  Obstacle* stop_obstacle = nullptr;
  ObjectDecisionType stop_decision;
  double min_stop_s = std::numeric_limits<double>::max();
  for (const auto* ptr_obstacle_item : path_decision->obstacles().Items()) {
    Obstacle* ptr_obstacle = path_decision->Find(ptr_obstacle_item->Id());
    ACHECK(ptr_obstacle != nullptr);

    // If no longitudinal decision has been made, then plot it onto ST-graph.
    if (!ptr_obstacle->HasLongitudinalDecision()) {
      ComputeSTBoundary(ptr_obstacle);
      continue;
    }

    // If there is a longitudinal decision, then fine-tune boundary.
    const auto& decision = ptr_obstacle->LongitudinalDecision();
    if (decision.has_stop()) {
      // 1. Store the closest stop fence info.
      // TODO(all): store ref. s value in stop decision; refine the code then.
      common::SLPoint stop_sl_point;
      reference_line_.XYToSL(decision.stop().stop_point(), &stop_sl_point);
      const double stop_s = stop_sl_point.s();

      if (stop_s < min_stop_s) {
        stop_obstacle = ptr_obstacle;
        min_stop_s = stop_s;
        stop_decision = decision;
      }
    } else if (decision.has_follow() || decision.has_overtake() ||
               decision.has_yield()) {
      // 2. Depending on the longitudinal overtake/yield decision,
      //    fine-tune the upper/lower st-boundary of related obstacles.
      ComputeSTBoundaryWithDecision(ptr_obstacle, decision);
    } else if (!decision.has_ignore()) {
      // 3. Ignore those unrelated obstacles.
      AWARN << "No mapping for decision: " << decision.DebugString();
    }
  }
  if (stop_obstacle) {
    bool success = MapStopDecision(stop_obstacle, stop_decision);
    if (!success) {
      const std::string msg = "Fail to MapStopDecision.";
      AERROR << msg;
      return Status(ErrorCode::PLANNING_ERROR, msg);
    }
  }

  return Status::OK();
}

ComputeSTBoundary(Obstacle* obstacle)

调用GetOverlapBoundaryPoints来获取给定障碍物的上下点,然后在此基础上制定STBoundary。它还根据以前记录的决策标记边界类型。

void STBoundaryMapper::ComputeSTBoundary(Obstacle* obstacle) const {
  if (FLAGS_use_st_drivable_boundary) {
    return;
  }
  std::vector<STPoint> lower_points;
  std::vector<STPoint> upper_points;
  // Map the given obstacle onto the ST-Graph.
  if (!GetOverlapBoundaryPoints(path_data_.discretized_path(), *obstacle,
                                &upper_points, &lower_points)) {
    return;
  }
  // 构建障碍物的boundary
  auto boundary = STBoundary::CreateInstance(lower_points, upper_points);
  boundary.set_id(obstacle->Id());

  // TODO(all): potential bug here.
  const auto& prev_st_boundary = obstacle->path_st_boundary();
  const auto& ref_line_st_boundary = obstacle->reference_line_st_boundary();
  if (!prev_st_boundary.IsEmpty()) {
    boundary.SetBoundaryType(prev_st_boundary.boundary_type());
  } else if (!ref_line_st_boundary.IsEmpty()) {
    boundary.SetBoundaryType(ref_line_st_boundary.boundary_type());
  }

  obstacle->set_path_st_boundary(boundary);
}

GetOverlapBoundaryPoints

将给定的障碍物映射到ST图中。

// Map the given obstacle onto the ST-Graph. 
// The boundary is represented as upper and lower points for every s of interests.
// Note that upper_points.size() = lower_points.size()
bool STBoundaryMapper::GetOverlapBoundaryPoints(
    const std::vector<PathPoint>& path_points, const Obstacle& obstacle,
    std::vector<STPoint>* upper_points,
    std::vector<STPoint>* lower_points) const {
  // Sanity checks.
  DCHECK(upper_points->empty());
  DCHECK(lower_points->empty());
  if (path_points.empty()) {
    AERROR << "No points in path_data_.discretized_path().";
    return false;
  }

  const auto* planning_status = injector_->planning_context()
                                    ->mutable_planning_status()
                                    ->mutable_change_lane();
  // lane_change_obstacle_nudge_l_buffer: minimum l-distance to nudge when changing lane (meters);0.3
  // nonstatic_obstacle_nudge_l_buffer: minimum l-distance to nudge a non-static obstacle (meters);0.4
  double l_buffer =
      planning_status->status() == ChangeLaneStatus::IN_CHANGE_LANE
          ? FLAGS_lane_change_obstacle_nudge_l_buffer
          : FLAGS_nonstatic_obstacle_nudge_l_buffer;

  // Draw the given obstacle on the ST-graph.
  const auto& trajectory = obstacle.Trajectory();
  if (trajectory.trajectory_point().empty()) {
    // For those with no predicted trajectories, just map the obstacle's
    // current position to ST-graph and always assume it's static.
    if (!obstacle.IsStatic()) {
      AWARN << "Non-static obstacle[" << obstacle.Id()
            << "] has NO prediction trajectory."
            << obstacle.Perception().ShortDebugString();
    }
    // 遍历离散路径点
    for (const auto& curr_point_on_path : path_points) {
      // planning_max_distance_ = path_data.discretized_path().Length()
      // 若当前点超过了规划最大距离,退出
      if (curr_point_on_path.s() > planning_max_distance_) {
        break;
      }
      // 获取障碍物的boundingbox
      const Box2d& obs_box = obstacle.PerceptionBoundingBox();
      if (CheckOverlap(curr_point_on_path, obs_box, l_buffer)) {
        // If there is overlapping, then plot it on ST-graph.
        const double backward_distance = -vehicle_param_.front_edge_to_center();
        const double forward_distance = obs_box.length();
        double low_s =
            std::fmax(0.0, curr_point_on_path.s() + backward_distance);
        double high_s = std::fmin(planning_max_distance_,
                                  curr_point_on_path.s() + forward_distance);
        // It is an unrotated rectangle appearing on the ST-graph.
        // 静止的障碍物在ST图中就是一个矩形
        // TODO(jiacheng): reconsider the backward_distance, it might be
        // unnecessary, but forward_distance is indeed meaningful though.
        lower_points->emplace_back(low_s, 0.0);
        lower_points->emplace_back(low_s, planning_max_time_);
        upper_points->emplace_back(high_s, 0.0);
        upper_points->emplace_back(high_s, planning_max_time_);
        break;
      }
    }
  } else {
    // For those with predicted trajectories (moving obstacles):
    // 1. Subsample to reduce computation time.
    const int default_num_point = 50;
    DiscretizedPath discretized_path;
    if (path_points.size() > 2 * default_num_point) {
      const auto ratio = path_points.size() / default_num_point;
      std::vector<PathPoint> sampled_path_points;
      for (size_t i = 0; i < path_points.size(); ++i) {
        if (i % ratio == 0) {
          sampled_path_points.push_back(path_points[i]);
        }
      }
      discretized_path = DiscretizedPath(std::move(sampled_path_points));
    } else {
      discretized_path = DiscretizedPath(path_points);
    }
    // 2. Go through every point of the predicted obstacle trajectory.
    for (int i = 0; i < trajectory.trajectory_point_size(); ++i) {
      const auto& trajectory_point = trajectory.trajectory_point(i);
      // 得到障碍物在轨迹点处的boundingbox
      const Box2d obs_box = obstacle.GetBoundingBox(trajectory_point);
      // 得到障碍物在轨迹点处的相对时间
      double trajectory_point_time = trajectory_point.relative_time();
      static constexpr double kNegtiveTimeThreshold = -1.0;
      // 跳过小于阈值时间的轨迹点
      if (trajectory_point_time < kNegtiveTimeThreshold) {
        continue;
      }
      // 步长
      const double step_length = vehicle_param_.front_edge_to_center();
      // FLAGS_max_trajectory_len: (unit: meter) max possible trajectory length. 1000.0
      auto path_len =
          std::min(FLAGS_max_trajectory_len, discretized_path.Length());
      // Go through every point of the ADC's path.
      for (double path_s = 0.0; path_s < path_len; path_s += step_length) {
        // 估计当前车辆的位置
        const auto curr_adc_path_point =
            discretized_path.Evaluate(path_s + discretized_path.front().s());
        if (CheckOverlap(curr_adc_path_point, obs_box, l_buffer)) {
          // Found overlap, start searching with higher resolution
          const double backward_distance = -step_length;
          const double forward_distance = vehicle_param_.length() +
                                          vehicle_param_.width() +
                                          obs_box.length() + obs_box.width();
          const double default_min_step = 0.1;  // in meters
          const double fine_tuning_step_length = std::fmin(
              default_min_step, discretized_path.Length() / default_num_point);

          bool find_low = false;
          bool find_high = false;
          double low_s = std::fmax(0.0, path_s + backward_distance);
          double high_s =
              std::fmin(discretized_path.Length(), path_s + forward_distance);

          // Keep shrinking by the resolution bidirectionally until finally
          // locating the tight upper and lower bounds.
          while (low_s < high_s) {
            if (find_low && find_high) {
              break;
            }
            if (!find_low) {
              const auto& point_low = discretized_path.Evaluate(
                  low_s + discretized_path.front().s());
              if (!CheckOverlap(point_low, obs_box, l_buffer)) {
                low_s += fine_tuning_step_length;
              } else {
                find_low = true;
              }
            }
            if (!find_high) {
              const auto& point_high = discretized_path.Evaluate(
                  high_s + discretized_path.front().s());
              if (!CheckOverlap(point_high, obs_box, l_buffer)) {
                high_s -= fine_tuning_step_length;
              } else {
                find_high = true;
              }
            }
          }
          if (find_high && find_low) {
            lower_points->emplace_back(
                low_s - speed_bounds_config_.point_extension(),
                trajectory_point_time);
            upper_points->emplace_back(
                high_s + speed_bounds_config_.point_extension(),
                trajectory_point_time);
          }
          break;
        }
      }
    }
  }

  // Sanity checks and return.
  DCHECK_EQ(lower_points->size(), upper_points->size());
  return (lower_points->size() > 1 && upper_points->size() > 1);
}

ComputeSTBoundaryWithDecision

对于产生纵向决策的障碍物产生的ST boundary进行调整。

// Fine-tune the boundary for yielding or overtaking obstacles. 
// Increase boundary on the s-dimension or set the boundary type, etc., when necessary.
void STBoundaryMapper::ComputeSTBoundaryWithDecision(
    Obstacle* obstacle, const ObjectDecisionType& decision) const {
  DCHECK(decision.has_follow() || decision.has_yield() ||
         decision.has_overtake())
      << "decision is " << decision.DebugString()
      << ", but it must be follow or yield or overtake.";

  std::vector<STPoint> lower_points;
  std::vector<STPoint> upper_points;

  if (FLAGS_use_st_drivable_boundary &&
      obstacle->is_path_st_boundary_initialized()) {
    const auto& path_st_boundary = obstacle->path_st_boundary();
    lower_points = path_st_boundary.lower_points();
    upper_points = path_st_boundary.upper_points();
  } else {
    if (!GetOverlapBoundaryPoints(path_data_.discretized_path(), *obstacle,
                                  &upper_points, &lower_points)) {
      return;
    }
  }

  auto boundary = STBoundary::CreateInstance(lower_points, upper_points);

  // get characteristic_length and boundary_type.
  STBoundary::BoundaryType b_type = STBoundary::BoundaryType::UNKNOWN;
  double characteristic_length = 0.0;
  if (decision.has_follow()) {
    characteristic_length = std::fabs(decision.follow().distance_s());
    b_type = STBoundary::BoundaryType::FOLLOW;
  } else if (decision.has_yield()) {
    characteristic_length = std::fabs(decision.yield().distance_s());
    boundary = STBoundary::CreateInstance(lower_points, upper_points)
                   .ExpandByS(characteristic_length);
    b_type = STBoundary::BoundaryType::YIELD;
  } else if (decision.has_overtake()) {
    characteristic_length = std::fabs(decision.overtake().distance_s());
    b_type = STBoundary::BoundaryType::OVERTAKE;
  } else {
    DCHECK(false) << "Obj decision should be either yield or overtake: "
                  << decision.DebugString();
  }
  boundary.SetBoundaryType(b_type);
  boundary.set_id(obstacle->Id());
  boundary.SetCharacteristicLength(characteristic_length);
  obstacle->set_path_st_boundary(boundary);
}

SetSpeedFallbackDistance

找到障碍物路径上最低的 s 值,该 s 值将用作速度回退的距离。

double SpeedBoundsDecider::SetSpeedFallbackDistance(
    PathDecision *const path_decision) {
  // Set min_s_on_st_boundaries to guide speed fallback.
  static constexpr double kEpsilon = 1.0e-6;
  double min_s_non_reverse = std::numeric_limits<double>::infinity();
  double min_s_reverse = std::numeric_limits<double>::infinity();
  // 遍历障碍物
  for (auto *obstacle : path_decision->obstacles().Items()) {
    const auto &st_boundary = obstacle->path_st_boundary();
    // 障碍物ST边界为空,跳过
    if (st_boundary.IsEmpty()) {
      continue;
    }
    // 获取st边界底部左侧点和右侧点的s值,并选择较小的值作为最低的s值
    const auto left_bottom_point_s = st_boundary.bottom_left_point().s();
    const auto right_bottom_point_s = st_boundary.bottom_right_point().s();
    const auto lowest_s = std::min(left_bottom_point_s, right_bottom_point_s);
    // 如果左侧点的 s 值减去右侧点的 s 值大于 kEpsilon(即左侧点在右侧点之后),则说明这是一个反向行驶的边界
    if (left_bottom_point_s - right_bottom_point_s > kEpsilon) {
      // 更新 min_s_reverse,将其设置为最低的 s 值
      if (min_s_reverse > lowest_s) {
        min_s_reverse = lowest_s;
      }
    } else if (min_s_non_reverse > lowest_s) {
      // 更新 min_s_non_reverse,将其设置为最低的 s 值。
      min_s_non_reverse = lowest_s;
    }
  }

  min_s_reverse = std::max(min_s_reverse, 0.0);
  min_s_non_reverse = std::max(min_s_non_reverse, 0.0);

  return min_s_non_reverse > min_s_reverse ? 0.0 : min_s_non_reverse;
}

创建速度限制

SpeedLimits来源于三个部分:

  1. 来自于地图的速度限制
  2. 来自于道路曲率的速度限制
  3. 来自于Nudge障碍物的速度限制

该部分流程图如下所示:
在这里插入图片描述

GetSpeedLimits

Status SpeedLimitDecider::GetSpeedLimits(
    const IndexedList<std::string, Obstacle>& obstacles,
    SpeedLimit* const speed_limit_data) const {
  CHECK_NOTNULL(speed_limit_data);

  const auto& discretized_path = path_data_.discretized_path();
  const auto& frenet_path = path_data_.frenet_frame_path();
  // 遍历离散路径点
  for (uint32_t i = 0; i < discretized_path.size(); ++i) {
    const double path_s = discretized_path.at(i).s();
    const double reference_line_s = frenet_path.at(i).s();
    if (reference_line_s > reference_line_.Length()) {
      AWARN << "path w.r.t. reference line at [" << reference_line_s
            << "] is LARGER than reference_line_ length ["
            << reference_line_.Length() << "]. Please debug before proceeding.";
      break;
    }

    // (1) speed limit from map
    double speed_limit_from_reference_line =
        reference_line_.GetSpeedLimitFromS(reference_line_s);

    // (2) speed limit from path curvature
    //  -- 2.1: limit by centripetal force (acceleration)
    const double speed_limit_from_centripetal_acc =
    // max_centric_acceleration_limit default = 2.0
        std::sqrt(speed_bounds_config_.max_centric_acceleration_limit() /
                  std::fmax(std::fabs(discretized_path.at(i).kappa()),
                            speed_bounds_config_.minimal_kappa()));

    // (3) speed limit from nudge obstacles
    // TODO(all): in future, expand the speed limit not only to obstacles with
    // nudge decisions.
    double speed_limit_from_nearby_obstacles =
        std::numeric_limits<double>::max();
    const double collision_safety_range =
        speed_bounds_config_.collision_safety_range();// default = 1.0
    // 遍历障碍物
    for (const auto* ptr_obstacle : obstacles.Items()) {
      // 跳过虚拟的障碍物
      if (ptr_obstacle->IsVirtual()) {
        continue;
      }
      // 障碍物没有横向Nudge决策,跳过
      if (!ptr_obstacle->LateralDecision().has_nudge()) {
        continue;
      }

      /* ref line:
       * -------------------------------
       *    start_s   end_s
       * ------|  adc   |---------------
       * ------------|  obstacle |------
       */

      // TODO(all): potential problem here;
      // frenet and cartesian coordinates are mixed.
      const double vehicle_front_s =
          reference_line_s + vehicle_param_.front_edge_to_center();
      const double vehicle_back_s =
          reference_line_s - vehicle_param_.back_edge_to_center();
      const double obstacle_front_s =
          ptr_obstacle->PerceptionSLBoundary().end_s();
      const double obstacle_back_s =
          ptr_obstacle->PerceptionSLBoundary().start_s();
      // 若车辆与障碍物在s方向上没有发生重合,跳过
      if (vehicle_front_s < obstacle_back_s ||
          vehicle_back_s > obstacle_front_s) {
        continue;
      }

      const auto& nudge_decision = ptr_obstacle->LateralDecision().nudge();

      // Please notice the differences between adc_l and frenet_point_l
      const double frenet_point_l = frenet_path.at(i).l();

      // obstacle is on the right of ego vehicle (at path point i)
      bool is_close_on_left =
          (nudge_decision.type() == ObjectNudge::LEFT_NUDGE) &&
          (frenet_point_l - vehicle_param_.right_edge_to_center() -
               collision_safety_range <
           ptr_obstacle->PerceptionSLBoundary().end_l());

      // obstacle is on the left of ego vehicle (at path point i)
      bool is_close_on_right =
          (nudge_decision.type() == ObjectNudge::RIGHT_NUDGE) &&
          (ptr_obstacle->PerceptionSLBoundary().start_l() -
               collision_safety_range <
           frenet_point_l + vehicle_param_.left_edge_to_center());

      // TODO(all): dynamic obstacles do not have nudge decision
      if (is_close_on_left || is_close_on_right) {
        double nudge_speed_ratio = 1.0;
        // 静态障碍物 x 0.6
        if (ptr_obstacle->IsStatic()) {
          nudge_speed_ratio =
              speed_bounds_config_.static_obs_nudge_speed_ratio(); // static_obs_nudge_speed_ratio: 0.6
        } else {
          // 动态障碍物 x 0.8
          nudge_speed_ratio =
              speed_bounds_config_.dynamic_obs_nudge_speed_ratio(); // dynamic_obs_nudge_speed_ratio: 0.8
        }
        speed_limit_from_nearby_obstacles =
            nudge_speed_ratio * speed_limit_from_reference_line;
        break;
      }
    }

    double curr_speed_limit = 0.0;
    // FLAGS_enable_nudge_slowdown: True to slow down when nudge obstacles
    if (FLAGS_enable_nudge_slowdown) {
      curr_speed_limit =
          std::fmax(speed_bounds_config_.lowest_speed(),   // lowest_speed:2.5
                    std::min({speed_limit_from_reference_line,
                              speed_limit_from_centripetal_acc,
                              speed_limit_from_nearby_obstacles}));
    } else {
      curr_speed_limit =
          std::fmax(speed_bounds_config_.lowest_speed(),
                    std::min({speed_limit_from_reference_line,
                              speed_limit_from_centripetal_acc}));
    }
    speed_limit_data->AppendSpeedLimit(path_s, curr_speed_limit);
  }
  return Status::OK();
}

设置标志位(is_close_on_left、is_close_on_right)部分的示意图如下:
在这里插入图片描述

GetSpeedLimitFromS

double ReferenceLine::GetSpeedLimitFromS(const double s) const {
  // 对于速度限制列表speed_limit_中已经有的部分,直接返回相应的值。
  for (const auto& speed_limit : speed_limit_) {
    if (s >= speed_limit.start_s && s <= speed_limit.end_s) {
      return speed_limit.speed_limit;
    }
  }
  const auto& map_path_point = GetReferencePoint(s);
  // FLAGS_planning_upper_speed_limit: Maximum speed (m/s) in planning;31.3
  double speed_limit = FLAGS_planning_upper_speed_limit;
  bool speed_limit_found = false;
  // 根据lane_waypoint道路的情况进行速度限制
  for (const auto& lane_waypoint : map_path_point.lane_waypoints()) {
    if (lane_waypoint.lane == nullptr) {
      AWARN << "lane_waypoint.lane is nullptr.";
      continue;
    }
    speed_limit_found = true;
    speed_limit =
        std::fmin(lane_waypoint.lane->lane().speed_limit(), speed_limit);
  }
  // 若未找到lane_waypoint.lane,根据道路类型进行限制
  if (!speed_limit_found) {
    // use default speed limit based on road_type
    // FLAGS_default_city_road_speed_limit: default speed limit (m/s) for city road. 35 mph
    speed_limit = FLAGS_default_city_road_speed_limit;
    hdmap::Road::Type road_type = GetRoadType(s);
    if (road_type == hdmap::Road::HIGHWAY) {
      // FLAGS_default_highway_speed_limit: default speed limit (m/s) for highway. 65 mph
      speed_limit = FLAGS_default_highway_speed_limit;
    }
  }

  return speed_limit;
}

参考

[1] Planning Piecewise Jerk Nonlinear Speed Optimizer Introduction
[2] Apollo规划控制学习笔记
[3] 1.10 Speed Bounds Prior Decider

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐