论文:Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions

⭐⭐⭐⭐

ACL 2023, arXiv:2212.10509

Code: github.com/stonybrooknlp/ircot

论文速读

大多数 RAG 都是一次检索来辅助 LLM 生成,但是面对多步骤推理问题,往往需要多次检索多次推理才能解决。

本文提出了 IRCoT:交叉进行 CoT 指导 retrieval 和使用 retrieval result 提升 CoT。也就是说,retrieval 和 reason 两个步骤必须相互通知。下图给了一个例子:

对于如上的问题, “In what country was Lost Gravity manufactured?” 单独问 LLM 或者单独在维基百科上搜索, 都很难得到答案. 但是通过如下步骤或许可以得到最终的答案:

  1. 首先将该问题在维基百科上搜索, 得到关于 《Lost Gravity》 的一些信息.
  2. LLM 能够从该信息中抓取到 《Lost Gravity》 的制作公司为 Mack Rides.
  3. 接着在维基百科中搜索 “The Lost Gradvity was manufactured by Mack Rides”, 我们会得到一些关于 Mack Rides 的信息.
  4. 基于该信息我们能够得到 (通过 LLM 抓取) “Mack Rides” 是一家德国公司的信息.
  5. 最终我们能够得到答案为: Germany.

上面的例子就是告诉我们,很多问题是需要检索 + 提取信息交替进行最后才能得到答案的。

整体思路如下图:

在这里插入图片描述

首先使用 question 从 Wikipedia 中检索出 K 个文档,之后交叉重复如下两个步骤,直到终止:

  1. reason-step:把 “question”、“目前为止收集到的所有 retrieved paragraphs”、“LLM 生成的所有 CoT 句子” 填充入下面的 prompt template,并输送给 LLM,让他做 generation,保留其生成的第一个句子作为本轮生成的 CoT sentence:
1715779228698
  1. retrieve-step:使用上一个 reason-step 得到的 CoT sentence,去 Wikipedia 检索出 K 个 paragraphs,将其加入到 retrieved paragraphs 中

重复交叉进行以上两个步骤,直到生成的 CoT sentence 中包含有 “answer is” 或者迭代轮数超过了 threshold。

实验与分析

该论文提出的 IRCoT:

  • 在多个 dataset 上均超过了 one-step retrieval 的模型
  • 在 OOD setting 中表现不错
  • 显著减少了 CoT 的事实错误
  • 对于较小 size 的 LLM 仍然有用
  • few-shot multi-step ODQA 的 SOTA 模型
Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐