AI 资讯|2024 Github 上最不能错过的 5 个开源 RAG 框架,让大模型不再胡言乱语!
把大模型想象为一位尽职的图书馆管理员,当你每次有疑问的时候,他就会根据你的口述需求,在浩瀚的文本中尽可能的找到最符合你需求的书籍。而一旦图书馆并没有相关藏书,或内容已过时,我们的这位尽职管理员可不会承认自己的无能,一顿输出猛如虎,结果一看全错。RAG 是一层额外的“知识外挂”。好比给这位管理员额外增补了相关领域的知识,这样它回答出的问题会变得更加精准。这样你就可以放心的让这位管理员,精准解答其他客
针对大模型冷不丁出现的幻觉、胡编乱造、信息源过时等问题,检索增强生成(RAG)被视为是最佳的解决办法。
什么是 RAG?
把大模型想象为一位尽职的图书馆管理员,当你每次有疑问的时候,他就会根据你的口述需求,在浩瀚的文本中尽可能的找到最符合你需求的书籍。
而一旦图书馆并没有相关藏书,或内容已过时,我们的这位尽职管理员可不会承认自己的无能,一顿输出猛如虎,结果一看全错。
RAG 是一层额外的“知识外挂”。好比给这位管理员额外增补了相关领域的知识,这样它回答出的问题会变得更加精准。这样你就可以放心的让这位管理员,精准解答其他客户所提出疑惑。
用更学术的角度来解释,RAG 的工作原理是从知识库中检索相关信息,并用来增强 LLM 的输入,从而使模型能够生成更准确、最新且与上下文相关的响应。
图中间的“检索”单元即为 RAG
RAG 框架将检索的系统的优势与生成模型相结合,实现更准确、上下文感知和最新的响应。这种方法有助于克服知识截止日期等限制,并降低 LLM 输出中出现幻觉的风险。
随着对复杂 AI 解决方案的需求不断增长,GitHub 上出现了大量开源 RAG 框架,每个框架都提供独特的特性和功能。
1. Haystack
Github 星数:14,600
地址:https://haystack.deepset.ai/
Haystack 是一个强大而灵活的框架,用于构建端到端问答和搜索系统。它提供了一个模块化架构,允许开发人员轻松地为各种 NLP 任务创建管道,包括文档检索、问答和摘要。Haystack 的主要功能包括:
-
支持多种文档存储(Elasticsearch、FAISS、SQL 等)
-
与流行语言模型(BERT、RoBERTa、DPR 等)集成
-
用于处理大量文档的可扩展架构
-
用于构建自定义 NLP 管道的易于使用的 API
2. RAGFlow
Github 星数:11,600
地址: https://github.com/infiniflow/ragflow
RAGFlow 是 RAG 框架领域的一个相对较新的进入者,但由于其对简单性和效率的关注,它很快就获得了关注。该框架旨在通过提供一组预构建的组件和工作流程来简化构建基于 RAG 的应用程序的过程。RAGFlow 的显着功能包括:
-
直观的工作流程设计界面
-
针对常见用例的预配置 RAG 管道
-
与流行的矢量数据库集成
-
支持自定义嵌入模型
RAGFlow 的用户友好方法使其成为想要快速原型设计和部署 RAG 应用程序而无需深入研究底层复杂性的开发人员的一个有吸引力的选择。
3. Txtai
Github 星数:7500
地址: https://github.com/neuml/txtai
txtai 是一个多功能的人工智能驱动的数据平台,超越了传统的 RAG 框架。它提供了一整套用于构建语义搜索、语言模型工作流程和文档处理管道的工具。txtai 的主要功能包括:
-
用于高效相似性搜索的嵌入数据库
-
用于集成语言模型和其他人工智能服务的API
-
自定义工作流程的可扩展架构
-
支持多种语言和数据类型
4. STORM
Github 星数:14,600
地址:https://haystack.deepset.ai/
STORM(Stanford Open-source RAG Model)是斯坦福大学开发的一个研究型RAG框架。虽然与其他一些框架相比,它的明星数量可能较少,但其学术血统和对尖端技术的关注使其成为对 RAG 技术最新进展感兴趣的研究人员和开发人员的宝贵资源。STORM 值得注意的方面包括:
-
新颖的 RAG 算法和技术的实现
-
注重提高检索机制的准确性和效率
-
与最先进的语言模型集成
-
大量的文档和研究论文
5. LLM-App
Github 星数:3400
地址:https://github.com/pathwaycom/llm-app
LLM-App 是用于构建动态 RAG 应用程序的模板和工具的集合。它因专注于实时数据同步和容器化部署而脱颖而出。LLM-App的主要功能包括:
-
可立即运行的 Docker 容器,用于快速部署
-
支持动态数据源和实时更新
-
与流行的 LLMs 和矢量数据库集成
-
适用于各种 RAG 用例的可定制模板
将 RAG 与 AI 相结合
有大神已将部分 RAG 框架封装为 API,你可以很方便地将 RAG 服务与 AI 相结合起来。Anakin.ai 平台内置了国内外领先的 AI 大模型,你可以通过 Workflow 功能,打造出专属的 AI 工作流!
除了进阶的 Workflow 编排功能,你还可以一站式体验 Claude 3.5、 Gemini 1.5 Flash 以及 Meta 最新推出的 Llama-3。
搭建好的 AI 应用支持 API 调用,可以任意集成至各个 App 内。
文字生成 AI 图片也是必须得有,已支持 Stable Diffusion XL 和 DALL·E 绘图模型。
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)