基于三阶贝塞尔曲线的数据平滑算法
文章目录前言贝塞尔曲线算法描述算法实现参考资料前言很多文章在谈及曲线平滑的时候,习惯使用拟合的概念,我认为这是不恰当的。平滑后的曲线,一定经过原始的数据点,而拟合曲线,则不一定要经过原始数据点。一般而言,需要平滑的数据分为两种:时间序列的单值数据、时间序列的二维数据。对于前者,并非一定要用贝塞尔算法,仅用样条插值就可以轻松实现平滑;而对于后者,不管是 numpy 还是 scipy 提供的那些...
前言
很多文章在谈及曲线平滑的时候,习惯使用拟合的概念,我认为这是不恰当的。平滑后的曲线,一定经过原始的数据点,而拟合曲线,则不一定要经过原始数据点。
一般而言,需要平滑的数据分为两种:时间序列的单值数据、时间序列的二维数据。对于前者,并非一定要用贝塞尔算法,仅用样条插值就可以轻松实现平滑;而对于后者,不管是 numpy 还是 scipy 提供的那些插值算法,就都不适用了。
本文基于三阶贝塞尔曲线,实现了时间序列的单值数据和时间序列的二维数据的平滑算法,可满足大多数的平滑需求。
贝塞尔曲线
关于贝塞尔曲线的数学原理,这里就不讨论了,直接贴出结论:
-
一阶贝塞尔曲线
-
二阶贝塞尔曲线
-
三阶贝塞尔曲线
算法描述
如果我们把三阶贝塞尔曲线的 P0 和 P3 视为原始数据,只要找到 P1 和 P2 两个点(我们称其为控制点),就可以根据三阶贝塞尔曲线公式,计算出 P0 和 P3 之间平滑曲线上的任意点。
现在,平滑问题变成了如何计算两个原始数据点之间的控制点的问题。步骤如下:
第1步:绿色直线连接相邻的原始数据点,计算出个线段的中点,红色直线连接相邻的中点
第2步:根据相邻两条绿色直线长度之比,分割其中点之间红色连线,标记分割点
第3步:平移红色连线,使其分割点与相对的原始数据点重合
第4步:调整平移后红色连线的端点与原始数据点的距离,通常缩减40%-80%
算法实现
# -*- coding: utf-8 -*-
import numpy as np
def bezier_curve(p0, p1, p2, p3, inserted):
"""
三阶贝塞尔曲线
p0, p1, p2, p3 - 点坐标,tuple、list或numpy.ndarray类型
inserted - p0和p3之间插值的数量
"""
assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型'
if isinstance(p0, (tuple, list)):
p0 = np.array(p0)
if isinstance(p1, (tuple, list)):
p1 = np.array(p1)
if isinstance(p2, (tuple, list)):
p2 = np.array(p2)
if isinstance(p3, (tuple, list)):
p3 = np.array(p3)
points = list()
for t in np.linspace(0, 1, inserted+2):
points.append(p0*np.power((1-t),3) + 3*p1*t*np.power((1-t),2) + 3*p2*(1-t)*np.power(t,2) + p3*np.power(t,3))
return np.vstack(points)
def smoothing_base_bezier(date_x, date_y, k=0.5, inserted=10, closed=False):
"""
基于三阶贝塞尔曲线的数据平滑算法
date_x - x维度数据集,list或numpy.ndarray类型
date_y - y维度数据集,list或numpy.ndarray类型
k - 调整平滑曲线形状的因子,取值一般在0.2~0.6之间。默认值为0.5
inserted - 两个原始数据点之间插值的数量。默认值为10
closed - 曲线是否封闭,如是,则首尾相连。默认曲线不封闭
"""
assert isinstance(date_x, (list, np.ndarray)), u'x数据集不是期望的列表或numpy数组类型'
assert isinstance(date_y, (list, np.ndarray)), u'y数据集不是期望的列表或numpy数组类型'
if isinstance(date_x, list) and isinstance(date_y, list):
assert len(date_x)==len(date_y), u'x数据集和y数据集长度不匹配'
date_x = np.array(date_x)
date_y = np.array(date_y)
elif isinstance(date_x, np.ndarray) and isinstance(date_y, np.ndarray):
assert date_x.shape==date_y.shape, u'x数据集和y数据集长度不匹配'
else:
raise Exception(u'x数据集或y数据集类型错误')
# 第1步:生成原始数据折线中点集
mid_points = list()
for i in range(1, date_x.shape[0]):
mid_points.append({
'start': (date_x[i-1], date_y[i-1]),
'end': (date_x[i], date_y[i]),
'mid': ((date_x[i]+date_x[i-1])/2.0, (date_y[i]+date_y[i-1])/2.0)
})
if closed:
mid_points.append({
'start': (date_x[-1], date_y[-1]),
'end': (date_x[0], date_y[0]),
'mid': ((date_x[0]+date_x[-1])/2.0, (date_y[0]+date_y[-1])/2.0)
})
# 第2步:找出中点连线及其分割点
split_points = list()
for i in range(len(mid_points)):
if i < (len(mid_points)-1):
j = i+1
elif closed:
j = 0
else:
continue
x00, y00 = mid_points[i]['start']
x01, y01 = mid_points[i]['end']
x10, y10 = mid_points[j]['start']
x11, y11 = mid_points[j]['end']
d0 = np.sqrt(np.power((x00-x01), 2) + np.power((y00-y01), 2))
d1 = np.sqrt(np.power((x10-x11), 2) + np.power((y10-y11), 2))
k_split = 1.0*d0/(d0+d1)
mx0, my0 = mid_points[i]['mid']
mx1, my1 = mid_points[j]['mid']
split_points.append({
'start': (mx0, my0),
'end': (mx1, my1),
'split': (mx0+(mx1-mx0)*k_split, my0+(my1-my0)*k_split)
})
# 第3步:平移中点连线,调整端点,生成控制点
crt_points = list()
for i in range(len(split_points)):
vx, vy = mid_points[i]['end'] # 当前顶点的坐标
dx = vx - split_points[i]['split'][0] # 平移线段x偏移量
dy = vy - split_points[i]['split'][1] # 平移线段y偏移量
sx, sy = split_points[i]['start'][0]+dx, split_points[i]['start'][1]+dy # 平移后线段起点坐标
ex, ey = split_points[i]['end'][0]+dx, split_points[i]['end'][1]+dy # 平移后线段终点坐标
cp0 = sx+(vx-sx)*k, sy+(vy-sy)*k # 控制点坐标
cp1 = ex+(vx-ex)*k, ey+(vy-ey)*k # 控制点坐标
if crt_points:
crt_points[-1].insert(2, cp0)
else:
crt_points.append([mid_points[0]['start'], cp0, mid_points[0]['end']])
if closed:
if i < (len(mid_points)-1):
crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end']])
else:
crt_points[0].insert(1, cp1)
else:
if i < (len(mid_points)-2):
crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end']])
else:
crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end'], mid_points[i+1]['end']])
crt_points[0].insert(1, mid_points[0]['start'])
# 第4步:应用贝塞尔曲线方程插值
out = list()
for item in crt_points:
group = bezier_curve(item[0], item[1], item[2], item[3], inserted)
out.append(group[:-1])
out.append(group[-1:])
out = np.vstack(out)
return out.T[0], out.T[1]
if __name__ == '__main__':
import matplotlib.pyplot as plt
x = np.array([2,4,4,3,2])
y = np.array([2,2,4,3,4])
plt.plot(x, y, 'ro')
x_curve, y_curve = smoothing_base_bezier(x, y, k=0.3, closed=True)
plt.plot(x_curve, y_curve, label='$k=0.3$')
x_curve, y_curve = smoothing_base_bezier(x, y, k=0.4, closed=True)
plt.plot(x_curve, y_curve, label='$k=0.4$')
x_curve, y_curve = smoothing_base_bezier(x, y, k=0.5, closed=True)
plt.plot(x_curve, y_curve, label='$k=0.5$')
x_curve, y_curve = smoothing_base_bezier(x, y, k=0.6, closed=True)
plt.plot(x_curve, y_curve, label='$k=0.6$')
plt.legend(loc='best')
plt.show()
下图为平滑效果。左侧是封闭曲线,两个原始数据点之间插值数量为默认值10;右侧为同样数据不封闭的效果,k值默认0.5.
参考资料
算法参考了 Interpolation with Bezier Curves 这个网页,里面没有关于作者的任何信息,在此只能笼统地向国际友人表示感谢!
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)