在这里插入图片描述
你是否曾跟我一样,因为看不懂数据结构和算法,而一度怀疑是自己太笨?实际上,很多人在第一次接触这门课时,都会有这种感觉,觉得数据结构和算法很抽象,晦涩难懂,宛如天书。正是这个原因,让很多初学者对这门课望而却步。

我个人觉得,其实真正的原因是你没有找到好的学习方法,没有抓住学习的重点。实际上,数据结构和算法的东西并不多,常用的、基础的知识点更是屈指可数。只要掌握了正确的学习方法,学起来并没有看上去那么难,更不需要什么高智商、厚底子

还记得大学里每次考前老师都要划重点吗?今天,我就给你划划我们这门课的重点,再告诉你一些我总结的学习小窍门。相信有了这些之后,你学起来就会有的放矢、事半功倍了。

什么是数据结构?什么是算法?

大部分数据结构和算法教材,在开篇都会给这两个概念下一个明确的定义。但是,这些定义都很抽象,对理解这两个概念并没有实质性的帮助,反倒会让你陷入死抠定义的误区。毕竟,我们学习,并不是为了考试,所以,概念背得再牢,不会用也就没什么用。

虽然我们说没必要深挖严格的定义,但是这并不等于不需要理解概念。 下面我就从广义和狭义两个层面,来帮你理解数据结构与算法这两个概念。

广义上讲,数据结构就是指一组数据的存储结构。算法就是操作数据的一组方法。

图书馆储藏书籍你肯定见过吧?为了方便查找,图书管理员一般会将书籍分门别类进行“存储”。按照一定规律编号,就是书籍这种“数据”的存储结构。

那我们如何来查找一本书呢?有很多种办法,你当然可以一本一本地找,也可以先根据书籍类别的编号,是人文,还是科学、计算机,来定位书架,然后再依次查找。笼统地说,这些查找方法都是算法。

狭义上讲,也就是我们专栏要讲的,是指某些著名的数据结构和算法,比如队列、栈、堆、二分查找、动态规划等。这些都是前人智慧的结晶,我们可以直接拿来用。我们要讲的这些经典数据结构和算法,都是前人从很多实际操作场景中抽象出来的,经过非常多的求证和检验,可以高效地帮助我们解决很多实际的开发问题。

那数据结构和算法有什么关系呢?为什么大部分书都把这两个东西放到一块儿来讲呢?

这是因为,数据结构和算法是相辅相成的。数据结构是为算法服务的,算法要作用在特定的数据结构之上。 因此,我们无法孤立数据结构来讲算法,也无法孤立算法来讲数据结构。

比如,因为数组具有随机访问的特点,常用的二分查找算法需要用数组来存储数据。但如果我们选择链表这种数据结构,二分查找算法就无法工作了,因为链表并不支持随机访问。

数据结构是静态的,它只是组织数据的一种方式。如果不在它的基础上操作、构建算法,孤立存在的数据结构就是没用的。

现在你对数据结构与算法是不是有了比较清晰的理解了呢?有了这些储备,下面我们来看看,究竟该怎么学数据结构与算法。

学习这个专栏需要什么基础?

看到数据结构和算法里的“算法”两个字,很多人就会联想到“数学”,觉得算法会涉及到很多深奥的数学知识。那我数学基础不是很好,学起来会不会很吃力啊?

数据结构和算法课程确实会涉及一些数学方面的推理、证明,尤其是在分析某个算法的时间、空间复杂度的时候,但是这个你完全不需要担心。

这个专栏不会像《算法导论》那样,里面有非常复杂的数学证明和推理。我会由浅入深,从概念到应用,一点一点给你解释清楚。你只要有高中数学水平,就完全可以学习

当然,我希望你最好有些编程基础,如果有项目经验就更好了。这样我给你讲数据结构和算法如何提高效率、如何节省存储空间,你就会有很直观的感受。因为,对于每个概念和实现过程,我都会从实际场景出发,不仅教你“是什么”,还会教你“为什么”,并且告诉你遇到同类型问题应该“怎么做”。

学习的重点在什么地方?

提到数据结构和算法,很多人就很头疼,因为这里面的内容实在是太多了。这里,我就帮你梳理一下,应该先学什么,后学什么。你可以对照看看,你属于哪个阶段,然后有针对地进行学习。

想要学习数据结构与算法,首先要掌握一个数据结构与算法中最重要的概念——复杂度分析

这个概念究竟有多重要呢?可以这么说,它几乎占了数据结构和算法这门课的半壁江山,是数据结构和算法学习的精髓。

数据结构和算法解决的是如何更省、更快地存储和处理数据的问题,因此,我们就需要一个考量效率和资源消耗的方法,这就是复杂度分析方法。所以,如果你只掌握了数据结构和算法的特点、用法,但是没有学会复杂度分析,那就相当于只知道操作口诀,而没掌握心法。只有把心法了然于胸,才能做到无招胜有招!

所以,复杂度分析这个内容,我会用很大篇幅给你讲透。你也一定要花大力气来啃,必须要拿下,并且要搞得非常熟练。否则,后面的数据结构和算法也很难学好。

搞定复杂度分析,下面就要进入数据结构与算法的正文内容了。

为了让你对数据结构和算法能有个全面的认识,我画了一张图,里面几乎涵盖了所有数据结构和算法书籍中都会讲到的知识点。

但是,作为初学者,或者一个非算法工程师来说,你并不需要掌握图里面的所有知识点。很多高级的数据结构与算法,比如二分图、最大流等,这些在我们平常的开发中很少会用到。所以,你暂时可以不用看。我还是那句话,咱们学习要学会找重点。如果不分重点地学习,眉毛胡子一把抓,学起来肯定会比较吃力。

所以,结合我自己的学习心得,还有这些年的面试、开发经验,我总结了20个最常用的、最基础数据结构与算法,不管是应付面试还是工作需要,只要集中精力逐一攻克这20个知识点就足够了。

这里面有10个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie树;10个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法。

掌握了这些基础的数据结构和算法,再学更加复杂的数据结构和算法,就会非常容易、非常快。

在学习数据结构和算法的过程中,你也要注意,不要只是死记硬背,不要为了学习而学习,而是要学习它的“来历”“自身的特点”“适合解决的问题”以及“实际的应用场景”。对于每一种数据结构或算法,我都会从这几个方面进行详细讲解。只要你掌握了我每节课里讲的内容,就能在开发中灵活应用。

学习数据结构和算法的过程,是非常好的思维训练的过程,所以,千万不要被动地记忆,要多辩证地思考,多问为什么。如果你一直这么坚持做,你会发现,等你学完之后,写代码的时候就会不由自主地考虑到很多性能方面的事情,时间复杂度、空间复杂度非常高的垃圾代码出现的次数就会越来越少。你的编程内功就真正得到了修炼。

一些可以让你事半功倍的学习技巧

前面我给你划了学习的重点,也讲了学习这门课需要具备的基础。作为一个过来人,现在我就给你分享一下,专栏学习的一些技巧。掌握了这些技巧,可以让你化被动为主动,学起来更加轻松,更加有动力!

1.边学边练,适度刷题

“边学边练”这一招非常有用。建议你每周花1~2个小时的时间,记住,时间要控制好,建议你每周花1~2个小时的时间,时间差别不要太偏离我的建议,学会管理时间的同时注重效率!集中把这周的三节内容涉及的数据结构和算法,全都自己写出来,用代码实现一遍。这样一定会比单纯地看或者听的效果要好很多!

有面试需求的同学,可能会问了,那我还要不要去刷题呢?

我个人的观点是可以“适度”刷题,但一定不要浪费太多时间在刷题上。我们学习的目的还是掌握,然后应用。除非你要面试Google、Facebook这样的公司,它们的算法题目非常非常难,必须大量刷题,才能在短期内提升应试正确率。如果是应对国内公司的技术面试,即便是BAT这样的公司,你只要彻底掌握这个专栏的内容,就足以应对。

2.多问、多思考、多互动

学习最好的方法是,找到几个人一起学习,一块儿讨论切磋,有问题及时寻求老师答疑。 但是,离开大学之后,既没有同学也没有老师,这个条件就比较难具备了。

不过,这也就是咱们专栏学习的优势。专栏里有很多跟你一样的学习者。你可以多在留言区写下自己的疑问、思考和总结,也可以经常看看别人的留言,和他们进行互动。

除此之外,如果你有疑问,你可以随时在留言区给我留言,我只要有空就会及时回复你。你不要担心问的问题太小白。因为我初学的时候,也常常会被一些小白问题困扰。不懂一点都不丢人,只要你勇敢提出来,我们一起解决了就可以了。

而你要做的就是,避免一知半解,要想尽一切办法去搞懂我讲的所有内容。

3.打怪升级学习法

学习的过程中,我们碰到最大的问题就是,坚持不下来。 是的,很多基础课程学起来都非常枯燥。为此,我自己总结了一套“打怪升级学习法”

游戏你肯定玩过吧?为什么很多看起来非常简单又没有乐趣的游戏,你会玩得不亦乐乎呢?这是因为,当你努力打到一定级别之后,每天看着自己的经验值、战斗力在慢慢提高,那种每天都在一点一点成长的成就感就不由自主地产生了。

所以,我们在枯燥的学习过程中,也可以给自己设立一个切实可行的目标,就像打怪升级一样。

比如,针对这个专栏,你就可以设立这样一个目标:每节课后的思考题都认真思考,并且回复到留言区。当你看到很多人给你点赞之后,你就会为了每次都能发一个漂亮的留言,而更加认真地学习。

当然,还有很多其他的目标,比如,每节课后都写一篇学习笔记或者学习心得;或者你还可以每节课都找一下我讲得不对、不合理的地方……诸如此类,你可以总结一个适合你的“打怪升级攻略”。

如果你能这样学习一段时间,不仅能收获到知识,你还会有意想不到的成就感。因为,这其实帮你改掉了一点学习的坏习惯。这个习惯一旦改掉了,你的人生也会变得不一样。

4.知识需要沉淀,不要想试图一下子掌握所有

在学习的过程中,一定会碰到“拦路虎”。如果哪个知识点没有怎么学懂,不要着急,这是正常的。因为,想听一遍、看一遍就把所有知识掌握,这肯定是不可能的。永远记住学习知识的过程是反复迭代、不断沉淀的过程

如果碰到“拦路虎”,你可以尽情地在留言区问我,也可以先沉淀一下,过几天再重新学一遍。所谓,书读百遍其义自见,我觉得是很有道理的!

我讲的这些学习方法,不仅仅针对咱们这一个课程的学习,其实完全适用任何知识的学习过程。你可以通过这个专栏的学习,实践一下这些方法。如果效果不错,再推广到之后的学习过程中。

内容小结
今天,我带你划了划数据结构和算法的学习重点,复杂度分析,以及10个数据结构和10个算法。

这些内容是我根据平时的学习和工作、面试经验积累,精心筛选出来的。只要掌握这些内容,应付日常的面试、工作,基本不会有问题。

除此之外,我还给你分享了我总结的一些学习技巧,比如边学边练、多问、多思考,还有两个比较通用的学习方法,打怪升级法和沉淀法。掌握了这些学习技巧,可以让你学习过程中事半功倍。所以,你一定要好好实践哦!

最后,博主的这篇文章是摘自极客王争老师的数据结构与算法专栏,所以完全不用担心上面讲的不到位,博主我只是简单的总结并且简单地标识一些重点,旨在分享,接下来的路途,博主我也会乐于分享该专栏的智慧结晶,毕竟 永远记住学习知识的过程是反复迭代、不断沉淀的过程,不过我认为这句话还不够完美,而博主我认为:学习知识的过程是反复迭代、不断沉淀、乐于分享的过程

推荐相关数据结构与算法文章:

动画 | 大学四年结束之前必须透彻的排序算法

数据结构与算法分析有多重要?

时间空间复杂度分析:如何分析、统计算法的执行效率和资源消耗

数据结构与算法专栏

最后的最后,博主想说:
在这里插入图片描述

如果本文章对你有帮助,哪怕是一点点,请点个赞呗,谢谢~

欢迎各位关注我的公众号,一起探讨技术,向往技术,追求技术…说好了来了就是盆友喔…

在这里插入图片描述

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐