攻防世界 crypto---simpleRSA wp
【其实有些往事,都不曾真正过去。真正过去的事情,就两种,一是完全不记得了,再就是那种可以随便言说的往事。】
前言
亚雷,你还知道更新博客啊?
题目
#!/usr/bin/env python3.9
# -*- coding: utf-8 -*-
import gmpy2
from Crypto.Util.number import getPrime, isPrime, bytes_to_long
from secret import FLAG, E1, E2, P, Q1, Q2
def next_prime(num: int) -> int:
num = num + 2 if num % 2 else num + 1
while not isPrime(num):
num += 2
return num
p = getPrime(1024)
q = next_prime(getPrime(16) * p + 38219)
n = p * q
c = pow(E1, 65537, n)
print(f'n = {n}')
print(f'c = {c}')
# n = 1605247600724752598798254639224215706171506359654961357324428027985787942008103766562745464838961569081446916113769517713344420113584254259000172572811154232107339480903672251992191997458469905064423618888336088652352540882576826988355783159237971043770132628344798937353150930071309347972804118952814447576207066147031238749098842662046825743988208813903138796789940911515825517078554074496474819128789835309636804325132602557092847746454786387067599510769382078521691609970320528531270474091713477040343897269903489441410062592732302402854035415438078656688806905350495825334584533345448091335565792091890185673190424063
# c = 751639057610677013264061431434189083017589908118307247217007533938435229431015858783222167911772848893015518607229280589985711010766459396989232072512314594917029375221335361209036112742388866873824163350886610514973038316512032459352053158417705406031466332440378871927174731975794579894912999936641163063898365134788537389162378185448090279397717831977803284480743612393591614284972981435749362255654561121758163485884075260156288337176713756471879489767416836868661153693157792733142765671887792303181376620864506386820826866340907593080654521498766421056474652652337037121881207188033108746890998208582406826010121861
assert E2.bit_length() == 69
ns = [getPrime(1024) * getPrime(1024) for _ in range(3)]
cs = [pow(E2, 89, n) for n in ns]
print(f'ns = {ns}')
print(f'cs = {cs}')
# ns = [15863230586500684911356384742123404120213699052018048588650392009927565369685497256344682150189923131009586323640507773706997704860898682946308031020361302334248895233255911348365179153799197341744863134926804603973507415697810440916305092395180382239729550833607847524005391137474497849077097574452115379368463540087172800902210822143687014813631366360652583216269138116785489485772437870528892032119729929607857459621078790511144060710035933887337208301078892163837203412081114510143406013892393607932596921308889058909544584619676380766485493114814753878272881866907210235681877689493671668534251778397658670518117, 14144098469438619358682652828507744381697293556670717685553585719665002440476256008471235313826051740009083510860714991201047915737216102220242621674841600987122005914542061963618272275986835928673920375768272390912778741502655909281390948606467847118377641357547931472588836726339758576038273820470879637555458446243401248151675266602656677360819563744765522495640821496694918515669243614141704744848980746101569785439728585144841655665959389460512628800782742764147773150430552859331269667626942993392101897661719871375721143240270211821269260950380944670195863016621594387236339317938305273510719419578308449465183, 27563822879593503938377821960427219022565215631856333510782568496016547757945464794632272818101891677705256471714805217606503652132995136255720639088424576003650628211271025648183600635145895528466199068640094470078526413324708028578289949241288828542143203769199399500669311878391255837977932634772778594526940501234736059441483897017015324765266787399950699732518347518591167932031031320265136158304460199654008895095274754918153773566824931440342525688741289235153882699461549523425169846266597156773535163599640189457171272058311480951820887261040891344076039474315985825984444520336790670313179493074014037981261]
# cs = [3833095607830862948079097323254872789586576953317671099752083261949616608759231291050566542764984974722790226120399722937104503590740358249900089784508490830379531632752169777949200718567033018577184658177019404903817920024468923715441355404672443007723525750768430895425376124679225715687382380114628103058312176343693900115638265002657622618744666247132114654135429040069316368839938881716554901593031901272992940200484460436193699175500376368456706998564064693820008778900344357745691652875500810447147088715289581351501876012044611990972521570253106671158207677490849249612002954497927762168699886110455354481924, 1502420121177211156091634258259634977709023894278792755694473756163084431123774101512866316989917922052023168401167212284219907272528117024670443698990238243030221117004372456475521502350404137469088570170885409265567084376069256924135270283335242133163303599239181417949980292944203204296598188175632723968779672994090788585343302473442389865459398142634104331743517384589200789331489394375604801951994831647339839112698394141328178967516636452592385248135340133712522135715943787590172334743893259621909532456281362868290556461907936774231166936915669816509378419892149164552548131776979706381641477878931403040942, 8992204063713908492214256291861339175525948946919629972908439132005643626148678347198381531633907182877152728077958345519083406637446972079387161726967295886447791613166577391233866583354793842121902234644830640050181130381996083089350911224037154798259291124104894554037604500881250119806371348673833105103600782286898276354573884788251542211434143476774391457587885772379990104835187104619922442613860682792470389490804228050671124495925536024571104944112397143299499508504917890140939438891891453283594000764399193028606955089853654071198909973555844004685149713774167524224100487937899126480545681565581673958854]
qq = getPrime(1024)
nn = P * qq
qqq = qq >> 460 << 460
print(f'nn = {nn}')
print(f'qqq = {qqq}')
# nn = 16851735797771199659625936797279158526379741298692339786049494329385618191510929735113284926125682522862667382938603116481087115598324232020838136618518964343752653000145611092980612556947954728339508416646035295651852840099205127587606898235203114875942637900167644300657599966420459187131027117268004042708998239798434578246497419547543598779697909298102358128788120332794123690714647499091326245022977970510468925837363300545900657420134894815246189043375619879915523611890538142257042753868665844692029124229028056547096764320547579965641276151760507921199827910445919017775913411823263307923216323527883262438117
# qqq = 121042531930820997492656296084544616958724191434895945419858099204426898711413526806300854553993738803031497438495403291406481997877273916883918253302909196533823945327277312672931819555344139777992801106437643790498379469530787985051569590331291422592393540391481519004782904598710037907420679190942964514816
assert len(FLAG) == 42
n1 = P * Q1
n2 = P * Q2
c1 = pow(bytes_to_long(FLAG), E1, n1)
c2 = pow(bytes_to_long(FLAG), E2, n2)
print(f'n1 = {n1}')
print(f'n2 = {n2}')
print(f'c1 = {c1}')
print(f'c2 = {c2}')
# n1 = 21655617838358037895534605162358784326495251462447218485102155997156394132443891540203860915433559917314267455046844360743623050975083617915806922096697304603878134295964650430393375225792781804726292460923708890722827436552209016368047420993613497196059326374616217655625810171080545267058266278112647715784756433895809757917070401895613168910166812566545593405362953487807840539425383123369842741821260523005208479361484891762714749721683834754601596796707669718084343845276793153649005628590896279281956588607062999398889314240295073524688108299345609307659091936270255367762936542565961639163236594456862919813549
# n2 = 24623016338698579967431781680200075706241014384066250660360949684385831604822817314457973559632215801205780786144608311361063622813017396858888436529116737754653067203843306015767091585697803364656624926853551997229897087731298797904208292585562517602132663331748784390752958757661484560335406769204491939879324079089140420467301773366050084810282369044622442784113688062220370531522036512803461607049619641336524486507388232280683726065679295742456158606213294533956580462863488082028563360006966912264908424680686577344549034033470952036766850596897062924137344079889301948258438680545785139118107899367307031396309
# c1 = 2615722342860373905833491925692465899705229373785773622118746270300793647098821993550686581418882518204094299812033719020077509270290007615866572202192731169538843513634106977827187688709725198643481375562114294032637211892276591506759075653224150064709644522873824736707734614347484224826380423111005274801291329132431269949575630918992520949095837680436317128676927389692790957195674310219740918585437793016218702207192925330821165126647260859644876583452851011163136097317885847756944279214149072452930036614703451352331567857453770020626414948005358547089607480508274005888648569717750523094342973767148059329557
# c2 = 6769301750070285366235237940904276375318319174100507184855293529277737253672792851212185236735819718282816927603167670154115730023644681563602020732801002035524276894497009910595468459369997765552682404281557968383413458466181053253824257764740656801662020120125474240770889092605770532420770257017137747744565202144183642972714927894809373657977142884508230107940618969817885214454558667008383628769508472963039551067432579488899853537410634175220583489733111861415444811663313479382343954977022383996370428051605169520337142916079300674356082855978456798812661535740008277913769809112114364617214398154457094899399
解题过程
求解E1
由q = next_prime(getPrime(16) * p + 38219)
可知,q
为p*getPrime(16)+38219
的下一个素数,因此getPrime(16)
较小,所以我们可以在其取值范围为遍历出符合题目的值,从而解出q
。
for i in range(2 ** 15, 2 ** 16):
if isPrime(i):
q = next_prime(i * iroot(n // i, 2)[0] + 38219)
if n % q == 0:
print(q)
break
p = n // q
phi = (p - 1) * (q - 1)
d = invert(e, phi)
E1 = pow(c, d, n)
print(E1)
run一哈脚本得到
E1 = 377312346502536339265
求解E2
中国剩余定理简单处理一下,之后开e
次方即可。
def chinese_remainder(modulus, remainders):
Sum = 0
prod = reduce(lambda a, b: a*b, modulus)
for m_i, r_i in zip(modulus, remainders):
p = prod // m_i
Sum += r_i * (inverse(p,m_i)*p)
return Sum % prod
ns = [15863230586500684911356384742123404120213699052018048588650392009927565369685497256344682150189923131009586323640507773706997704860898682946308031020361302334248895233255911348365179153799197341744863134926804603973507415697810440916305092395180382239729550833607847524005391137474497849077097574452115379368463540087172800902210822143687014813631366360652583216269138116785489485772437870528892032119729929607857459621078790511144060710035933887337208301078892163837203412081114510143406013892393607932596921308889058909544584619676380766485493114814753878272881866907210235681877689493671668534251778397658670518117, 14144098469438619358682652828507744381697293556670717685553585719665002440476256008471235313826051740009083510860714991201047915737216102220242621674841600987122005914542061963618272275986835928673920375768272390912778741502655909281390948606467847118377641357547931472588836726339758576038273820470879637555458446243401248151675266602656677360819563744765522495640821496694918515669243614141704744848980746101569785439728585144841655665959389460512628800782742764147773150430552859331269667626942993392101897661719871375721143240270211821269260950380944670195863016621594387236339317938305273510719419578308449465183, 27563822879593503938377821960427219022565215631856333510782568496016547757945464794632272818101891677705256471714805217606503652132995136255720639088424576003650628211271025648183600635145895528466199068640094470078526413324708028578289949241288828542143203769199399500669311878391255837977932634772778594526940501234736059441483897017015324765266787399950699732518347518591167932031031320265136158304460199654008895095274754918153773566824931440342525688741289235153882699461549523425169846266597156773535163599640189457171272058311480951820887261040891344076039474315985825984444520336790670313179493074014037981261]
cs = [3833095607830862948079097323254872789586576953317671099752083261949616608759231291050566542764984974722790226120399722937104503590740358249900089784508490830379531632752169777949200718567033018577184658177019404903817920024468923715441355404672443007723525750768430895425376124679225715687382380114628103058312176343693900115638265002657622618744666247132114654135429040069316368839938881716554901593031901272992940200484460436193699175500376368456706998564064693820008778900344357745691652875500810447147088715289581351501876012044611990972521570253106671158207677490849249612002954497927762168699886110455354481924, 1502420121177211156091634258259634977709023894278792755694473756163084431123774101512866316989917922052023168401167212284219907272528117024670443698990238243030221117004372456475521502350404137469088570170885409265567084376069256924135270283335242133163303599239181417949980292944203204296598188175632723968779672994090788585343302473442389865459398142634104331743517384589200789331489394375604801951994831647339839112698394141328178967516636452592385248135340133712522135715943787590172334743893259621909532456281362868290556461907936774231166936915669816509378419892149164552548131776979706381641477878931403040942, 8992204063713908492214256291861339175525948946919629972908439132005643626148678347198381531633907182877152728077958345519083406637446972079387161726967295886447791613166577391233866583354793842121902234644830640050181130381996083089350911224037154798259291124104894554037604500881250119806371348673833105103600782286898276354573884788251542211434143476774391457587885772379990104835187104619922442613860682792470389490804228050671124495925536024571104944112397143299499508504917890140939438891891453283594000764399193028606955089853654071198909973555844004685149713774167524224100487937899126480545681565581673958854]
e = 89
m_e = chinese_remainder(ns,cs)
E2 = gmpy2.iroot(m_e,e)[0]
print(E2)
解出E2值如下
E2 = 561236991551738188085
求P以及flag
第三部分代码本来是出题者想出p高位然后去求P的,但是在第四段代码中出了纰漏,n1 = P * Q1
和n2 = P * Q2
这两个n
有共同的因子P,所以可以直接求他们的最大公约数得到P
,即P=gmpy2.gcd(n1,n2)
,则分别可以求出Q1=n1//P
和Q2=n2//P
。
本题难点:计算E1
和phi1
,E2
和phi2
发现都等于35
,不能够直接求私钥d了,而且求出来的m
直接开35
次方也得不到flag
。
方法一
所以我们需要换一种思路来把
m
35
m^{35}
m35的复杂度降下来
根据同余性质:
a
≡
b
m
o
d
m
n
a \equiv{b}\space mod\space{mn}
a≡b mod mn变换成
a
≡
b
m
o
d
m
a\equiv{b}\space mod \space m
a≡b mod m 和
a
≡
b
m
o
d
n
a\equiv{b}\space mod \space n
a≡b mod n
我们可以得到如下式子:
c
1
≡
m
e
1
m
o
d
P
c1\equiv{m^{e1}}\space mod \space P
c1≡me1 mod P
c
1
≡
m
e
1
m
o
d
Q
1
c1\equiv{m^{e1}}\space mod \space Q1
c1≡me1 mod Q1
c
2
≡
m
e
2
m
o
d
P
c2\equiv{m^{e2}}\space mod \space P
c2≡me2 mod P
c
2
≡
m
e
2
m
o
d
Q
2
c2\equiv{m^{e2}}\space mod \space Q2
c2≡me2 mod Q2
再根据同余式相乘性质得到:
c
3
=
c
1
∗
c
2
≡
m
e
1
∗
m
e
2
m
o
d
P
c3=c1*c2\equiv{m^{e1}*{m^{e2}}\space mod \space{P}}
c3=c1∗c2≡me1∗me2 mod P
接下来就可以利用中国剩余定理将这一组同余式求得一个特解,即
c
1
≡
m
e
1
m
o
d
Q
1
c1\equiv{m^{e1}}\space mod \space Q1
c1≡me1 mod Q1
c
2
≡
m
e
2
m
o
d
Q
2
c2\equiv{m^{e2}}\space mod \space Q2
c2≡me2 mod Q2
c
3
≡
m
e
1
∗
m
e
2
m
o
d
P
c3\equiv{m^{e1}*{m^{e2}}\space mod \space{P}}
c3≡me1∗me2 mod P
然后重新构建一个新的RSA
result = solve_crt([c1,c2,c3],[Q1,Q2,P])
c_m = result %n
n = Q1*Q2
e = 35
phi = (Q1-1)*(Q2-1)
d = gmpy2.invert(7,phi)
m = pow(c_m,d,n)
最后再把得到得m
开5
次方,即可
flag = gmpy2.iroot(m,5)[0]
完整解题代码
n1 = 21655617838358037895534605162358784326495251462447218485102155997156394132443891540203860915433559917314267455046844360743623050975083617915806922096697304603878134295964650430393375225792781804726292460923708890722827436552209016368047420993613497196059326374616217655625810171080545267058266278112647715784756433895809757917070401895613168910166812566545593405362953487807840539425383123369842741821260523005208479361484891762714749721683834754601596796707669718084343845276793153649005628590896279281956588607062999398889314240295073524688108299345609307659091936270255367762936542565961639163236594456862919813549
n2 = 24623016338698579967431781680200075706241014384066250660360949684385831604822817314457973559632215801205780786144608311361063622813017396858888436529116737754653067203843306015767091585697803364656624926853551997229897087731298797904208292585562517602132663331748784390752958757661484560335406769204491939879324079089140420467301773366050084810282369044622442784113688062220370531522036512803461607049619641336524486507388232280683726065679295742456158606213294533956580462863488082028563360006966912264908424680686577344549034033470952036766850596897062924137344079889301948258438680545785139118107899367307031396309
c1 = 2615722342860373905833491925692465899705229373785773622118746270300793647098821993550686581418882518204094299812033719020077509270290007615866572202192731169538843513634106977827187688709725198643481375562114294032637211892276591506759075653224150064709644522873824736707734614347484224826380423111005274801291329132431269949575630918992520949095837680436317128676927389692790957195674310219740918585437793016218702207192925330821165126647260859644876583452851011163136097317885847756944279214149072452930036614703451352331567857453770020626414948005358547089607480508274005888648569717750523094342973767148059329557
c2 = 6769301750070285366235237940904276375318319174100507184855293529277737253672792851212185236735819718282816927603167670154115730023644681563602020732801002035524276894497009910595468459369997765552682404281557968383413458466181053253824257764740656801662020120125474240770889092605770532420770257017137747744565202144183642972714927894809373657977142884508230107940618969817885214454558667008383628769508472963039551067432579488899853537410634175220583489733111861415444811663313479382343954977022383996370428051605169520337142916079300674356082855978456798812661535740008277913769809112114364617214398154457094899399
E1 = 377312346502536339265
E2 = 561236991551738188085
P = gmpy2.gcd(n1,n2)
Q2 = n2//P
Q1 = n1//P
c = [pow(c1, gmpy2.invert(E1 // 35, (P - 1) * (Q1 - 1)), n1),
pow(c2, gmpy2.invert(E2 // 35, (P - 1) * (Q2 - 1)), n2)]
c3 = c[0]*c[1]%P
c2 = c[1] %Q2
c1 = c[0] %Q1
result = solve_crt([c1,c2,c3],[Q1,Q2,P])
phi = (Q1-1)*(Q2-1)
n = Q1*Q2
c_m = result % n
d = gmpy2.invert(7,phi)
m = pow(c_m,d,n)
flag = gmpy2.iroot(m,5)[0]
print(long_to_bytes(flag))
方法二
p
h
i
1
=
(
P
−
1
)
(
Q
1
−
1
)
phi_1 = (P-1)(Q_1-1)
phi1=(P−1)(Q1−1)
且gcd(
E
1
E_1
E1,
p
h
i
1
phi_1
phi1) = 35,由此我们可以计算出
m
35
m^{35}
m35
因为
m
35
m^{35}
m35远大于
N
1
N_1
N1,因此直接开35次方是不能得到flag的
我们可以分别在P和
Q
1
Q_1
Q1的有限域下对
m
35
m^{35}
m35进行开方,然后用crt组合即可得到flag
#sage
import gmpy2
from Crypto.Util.number import *
n1 = 21655617838358037895534605162358784326495251462447218485102155997156394132443891540203860915433559917314267455046844360743623050975083617915806922096697304603878134295964650430393375225792781804726292460923708890722827436552209016368047420993613497196059326374616217655625810171080545267058266278112647715784756433895809757917070401895613168910166812566545593405362953487807840539425383123369842741821260523005208479361484891762714749721683834754601596796707669718084343845276793153649005628590896279281956588607062999398889314240295073524688108299345609307659091936270255367762936542565961639163236594456862919813549
n2 = 24623016338698579967431781680200075706241014384066250660360949684385831604822817314457973559632215801205780786144608311361063622813017396858888436529116737754653067203843306015767091585697803364656624926853551997229897087731298797904208292585562517602132663331748784390752958757661484560335406769204491939879324079089140420467301773366050084810282369044622442784113688062220370531522036512803461607049619641336524486507388232280683726065679295742456158606213294533956580462863488082028563360006966912264908424680686577344549034033470952036766850596897062924137344079889301948258438680545785139118107899367307031396309
c1 = 2615722342860373905833491925692465899705229373785773622118746270300793647098821993550686581418882518204094299812033719020077509270290007615866572202192731169538843513634106977827187688709725198643481375562114294032637211892276591506759075653224150064709644522873824736707734614347484224826380423111005274801291329132431269949575630918992520949095837680436317128676927389692790957195674310219740918585437793016218702207192925330821165126647260859644876583452851011163136097317885847756944279214149072452930036614703451352331567857453770020626414948005358547089607480508274005888648569717750523094342973767148059329557
c2 = 6769301750070285366235237940904276375318319174100507184855293529277737253672792851212185236735819718282816927603167670154115730023644681563602020732801002035524276894497009910595468459369997765552682404281557968383413458466181053253824257764740656801662020120125474240770889092605770532420770257017137747744565202144183642972714927894809373657977142884508230107940618969817885214454558667008383628769508472963039551067432579488899853537410634175220583489733111861415444811663313479382343954977022383996370428051605169520337142916079300674356082855978456798812661535740008277913769809112114364617214398154457094899399
E1 = 377312346502536339265
E2 = 561236991551738188085
p = gmpy2.gcd(n1,n2)
q = n1//p
phi = (p-1)*(q-1)
t = gmpy2.gcd(gmpy2.mpz(E1),phi)
d = gmpy2.invert(E1//t,phi)
m = pow(c1,d,n1)
R.<x> = Zmod(p)[]
f = x^t-m
f = f.monic()
results1 = f.roots()
R.<x> = Zmod(q)[]
f = x^t-m
f = f.monic()
results2 = f.roots()
for i in results1:
for j in results2:
param1 = [int(i[0]),int(j[0])]
param2 = [p,q]
M = CRT_list(param1,param2)
flag = long_to_bytes(int(M))
if b'flag' in flag:
print(flag)
break
【其实有些往事,都不曾真正过去。真正过去的事情,就两种,一是完全不记得了,再就是那种可以随便言说的往事。】
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)