NeurIPS 2024 | 时间序列(Time Series)论文总结
NeurIPS 2024于2024年12月10号-12月15号在加拿大温哥华举行(Vancouver, Canada),录取率25.8%本文总结了NeurIPS 2024有关时间序列(time series data)的相关论文,主要包含如有疏漏,欢迎大家补充。****时间序列Topic**:预测,插补,分类,生成,因果分析,异常检测,LLM以及基础模型等内容。总计60篇,其中正会56篇,D&B
NeurIPS 2024于2024年12月10号-12月15号在加拿大温哥华举行(Vancouver, Canada),录取率25.8%
本文总结了NeurIPS 2024有关时间序列(time series data)的相关论文,主要包含如有疏漏,欢迎大家补充。
时间序列Topic:预测,插补,分类,生成,因果分析,异常检测,LLM以及基础模型等内容。总计60篇,其中正会56篇,D&B Track4篇
预测:1-29
异常检测:30,58
分类:32,55,56
表示学习:37,39,40
生成:31,41,42,60
时序分析:33,34,36
大语言模型:7,10,24,52
基础模型:16,29,35,53
扩散模型: 1,31,42,43
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
- Retrieval-Augumented Diffusion Models for Time Series Forecasting
- Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective
- Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
- FilterNet: Harnessing Frequency Filters for Time Series Forecasting
- Frequency Adaptive Normalization For Non-stationary Time Series Forecasting
- Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective
- AutoTimes: Autoregressive Time Series Forecasters via Large Language Models
- DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting
- BackTime: Backdoor Attacks on Multivariate Time Series Forecasting
- Are Language Models Actually Useful for Time Series Forecasting?
- Rethinking Fourier Transform for Long-term Time Series Forecasting: A Basis Functions Perspective
- Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting
- Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting
- Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics
- DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching
- Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting
- PGN: The RNN’s New Successor is Effective for Long-Range Time Series Forecasting
- SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion
- Multivariate Probabilistic Time Series Forecasting with Correlated Errors
- CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns
- Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
- CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting
- Scaling Law for Time Series Forecasting
- From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection
- From Similarity to Superiority: Channel Clustering for Time Series Forecasting
- TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables
- ElasTST: Towards Robust Varied-Horizon Forecasting with Elastic Time-Series Transformer
- Are Self-Attentions Effective for Time Series Forecasting?
- Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
- SARAD: Spatial Association-Aware Anomaly Detection and Diagnosis for Multivariate Time Series
- Utilizing Image Transforms and Diffusion Models for Generative Modeling of Short and Long Time Series
- Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
- Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis
- Shape analysis for time series
- UNITS: A Unified Multi-Task Time Series Model
- Large Pre-trained time series models for cross-domain Time series analysis tasks
- “Segment, Shuffle, and Stitch: A Simple Mechanism for Improving Time-Series Representations”
- Task-oriented Time Series Imputation Evaluation via Generalized Representers
- Exploiting Representation Curvature for Boundary Detection in Time Series
- Learning diverse causally emergent representations from time series data
- SDformer: Similarity-driven Discrete Transformer For Time Series Generation
- FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation
- ANT: Adaptive Noise Schedule for Time Series Diffusion Models
- Trajectory Flow Matching with Applications to Clinical Time Series Modelling
- Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
- Reinforced Cross-Domain Knowledge Distillation on Time Series Data
- Boosting Transferability and Discriminability for Time Series Domain Adaptation
- Towards Editing Time Series
- Conformalized Time Series with Semantic Features
- ChronoEpilogi: Scalable Time Series Selection with Multiple Solutions
- Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
- Tri-Level Navigator: LLM-Empowered Tri-Level Learning for Time Series OOD Generalization
- UniMTS: Unified Pre-training for Motion Time Series
- IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
- Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
- Abstracted Shapes as Tokens - A Generalizable and Interpretable Model for Time-series Classification
D&B Track
- The Elephant in the Room: Towards A Reliable Time-Series Anomaly Detection Benchmark
- Building Timeseries Dataset: Empowering Large-Scale Building Analytics
- Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis
- TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
1 Retrieval-Augumented Diffusion Models for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/94339
作者:Jingwei Liu, Ling Yang, Hongyan Li, Shenda Hong
关键词:预测,扩散模型,检索增强
2 Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective
链接:https://neurips.cc/virtual/2024/poster/94220
arXiv:https://arxiv.org/abs/2402.11463
作者:Jiaxi Hu, Yuehong Hu, Wei Chen, Ming Jin, Shirui Pan, Qingsong Wen, Yuxuan Liang
关键词:长时预测
3 Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95175
作者:Zongjiang Shang, Ling Chen, Binqing Wu, Dongliang Cui
关键词:预测,多尺度,超图,Transformer
4 FilterNet: Harnessing Frequency Filters for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/93257
作者:Kun Yi, Wei Fan, Qi Zhang, Hui He, Jingru Fei, Shufeng Hao, Defu Lian
关键词:预测,频率过滤
5 Frequency Adaptive Normalization For Non-stationary Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95063
arXiv:https://arxiv.org/abs/2409.20371
作者:Weiwei Ye · Songgaojun Deng · Qiaosha Zou · Ning Gui
关键词:预测,非平稳
6 Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective
链接:https://neurips.cc/virtual/2024/poster/96026
arXiv:https://arxiv.org/abs/2409.18696
作者:Chengsen Wang · Qi Qi · Jingyu Wang · Haifeng Sun · Zirui Zhuang · Jinming Wu · Jianxin Liao
关键词:预测,稳健性
7 AutoTimes: Autoregressive Time Series Forecasters via Large Language Models
链接:https://neurips.cc/virtual/2024/poster/95975
arXiv:https://arxiv.org/abs/2402.02370
作者:Yong Liu · Guo Qin · Xiangdong Huang · Jianmin Wang · Mingsheng Long
关键词:预测,LLM,自回归
8 DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95167
作者:Tao Dai · Beiliang Wu · Peiyuan Liu · Naiqi Li · Xue Yuerong · Shu-Tao Xia · Zexuan Zhu
关键词:预测,非平稳,双域
9 BackTime: Backdoor Attacks on Multivariate Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95645
arXiv:https://arxiv.org/abs/2410.02195
作者:Xiao Lin · Zhining Liu · Dongqi Fu · Ruizhong Qiu · Hanghang Tong
关键词:预测,后门攻击
10 [Spotlight] Are Language Models Actually Useful for Time Series Forecasting?
链接:https://neurips.cc/virtual/2024/poster/96085
arXiv:https://arxiv.org/abs/2410.02195
作者:Mingtian Tan · Mike Merrill · Vinayak Gupta · Tim Althoff · Tom Hartvigsen
关键词:预测,LLM
备注:大胆之作,去掉LLM效果更好了。
11 Rethinking Fourier Transform for Long-term Time Series Forecasting: A Basis Functions Perspective
链接:https://neurips.cc/virtual/2024/poster/96209
作者:Runze Yang · Longbing Cao · JIE YANG · li jianxun
关键词:长时预测,傅里叶变换
12 Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/94305
作者:Bong Gyun Kang · Dongjun Lee · HyunGi Kim · Dohyun Chung · Sungroh Yoon
关键词:预测,谱域注意力,长期依赖
13 Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/93133
arXiv:https://arxiv.org/abs/2401.11929
作者:Jinliang Deng · Feiyang Ye · Du Yin · Xuan Song · Ivor Tsang · Hui Xiong
关键词:长时预测
14 Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics
链接:https://neurips.cc/virtual/2024/poster/94383
作者:Xiaodan Chen · Xiucheng Li · Xinyang Chen · Zhijun Li
关键词:预测,可解释性,动态性
15 DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching
链接:https://neurips.cc/virtual/2024/poster/96221
作者:Donghao Luo · Xue Wang
关键词:预测,Transformer,Patch
16 Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95835
arXiv:https://arxiv.org/abs/2405.14252
作者:Qingxiang Liu · Xu Liu · Chenghao Liu · Qingsong Wen · Yuxuan Liang
关键词:预测,联邦学习,基础模型
17 PGN: The RNN’s New Successor is Effective for Long-Range Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/92992
arXiv:https://arxiv.org/abs/2409.17703
代码:https://github.com/Water2sea/TPGN
作者:Yuxin Jia · Youfang Lin · Jing Yu · Shuo Wang · Tianhao Liu · Huaiyu Wan
关键词:长时预测,RNN
18 SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion
链接:https://neurips.cc/virtual/2024/poster/96390
arXiv:https://arxiv.org/abs/2404.14197
代码:https://github.com/Secilia-Cxy/SOFTS
作者:Han Lu · Xu-Yang Chen · Han-Jia Ye · De-Chuan Zhan
关键词:预测,MLP
19 Multivariate Probabilistic Time Series Forecasting with Correlated Errors
链接:https://neurips.cc/virtual/2024/poster/94440
arXiv:https://arxiv.org/abs/2402.01000
作者:Zhihao Zheng · Lijun Sun
关键词:概率预测,不确定性量化
20 CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns
链接:https://neurips.cc/virtual/2024/poster/94391
arXiv:https://arxiv.org/abs/2409.18479
代码:https://github.com/ACAT-SCUT/CycleNet
作者:Shengsheng Lin · Weiwei Lin · Xinyi Hu · Wentai Wu · Ruichao Mo · Haocheng Zhong
关键词:长时预测,周期建模
21 Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95988
作者:Romain Ilbert · Malik Tiomoko · Cosme Louart · Ambroise Odonnat · Vasilii Feofanov · Themis Palpanas · Ievgen Redko
关键词:预测,多任务回归,随机矩阵理论
22 CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95627
arXiv:https://arxiv.org/abs/2406.02131
代码:https://github.com/RafaDD/CondTSF
作者:Jianrong Ding · Zhanyu Liu · Guanjie Zheng · Haiming Jin · Linghe Kong
关键词:预测,插件
23 Scaling Law for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/96119
arXiv:https://arxiv.org/pdf/2405.15124
代码:https://github.com/JingzheShi/ScalingLawForTimeSeriesForecasting
作者:Jingzhe Shi · Qinwei Ma · Huan Ma · Lei Li
关键词:预测,Scaling Law
24 From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection
链接:https://neurips.cc/virtual/2024/poster/93316
arXiv:https://arxiv.org/abs/2409.17515
作者:Xinlei Wang · Maike Feng · Jing Qiu · Jinjin Gu · Junhua Zhao
关键词:预测,LLM,事件融合
25 From Similarity to Superiority: Channel Clustering for Time Series Forecasting
链接:https://neurips.cc/virtual/2024/poster/95539
arXiv:https://arxiv.org/abs/2404.01340
作者:Jialin Chen · Jan Eric Lenssen · Aosong Feng · Weihua Hu · Matthias Fey · Leandros Tassiulas · Jure Leskovec · Rex Ying
关键词:预测,通道聚类
26 TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables
链接:https://neurips.cc/virtual/2024/poster/95770
arXiv:https://arxiv.org/abs/2402.19072
作者:Yuxuan Wang · Haixu Wu · Jiaxiang Dong · Guo Qin · Haoran Zhang · Yong Liu · Yun-Zhong Qiu · Jianmin Wang · Mingsheng Long
关键词:预测,外生变量,Transformer
27 ElasTST: Towards Robust Varied-Horizon Forecasting with Elastic Time-Series Transformer
链接:https://neurips.cc/virtual/2024/poster/93264
作者:Jiawen Zhang · Shun Zheng · Xumeng Wen · Xiaofang Zhou · Jiang Bian · Jia Li
关键词:预测,稳健性,Patch
28 Are Self-Attentions Effective for Time Series Forecasting?
链接:https://neurips.cc/virtual/2024/poster/94012
arXiv:https://arxiv.org/abs/2405.16877
作者:Dongbin Kim · Jinseong Park · Jaewook Lee · Hoki Kim
关键词:预测,交叉注意力
29 Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
链接:https://neurips.cc/virtual/2024/poster/96748
arXiv:https://arxiv.org/abs/2401.03955
代码:https://github.com/ibm-granite/granite-tsfm/tree/main/tsfm_public/models/tinytimemixer
Huggingface:https://huggingface.co/ibm-granite/granite-timeseries-ttm-v1
作者:Vijay Ekambaram · Arindam Jati · Pankaj Dayama · Sumanta Mukherjee · Nam Nguyen · WESLEY M GIFFORD · Chandra Reddy · Jayant Kalagnanam
关键词:零样本/少样本预测
30 SARAD: Spatial Association-Aware Anomaly Detection and Diagnosis for Multivariate Time Series
链接:https://neurips.cc/virtual/2024/poster/94119
作者:Zhihao Dai · Ligang He · Shuanghua Yang · Matthew Leeke
关键词:异常检测,空间关联感知
31 Utilizing Image Transforms and Diffusion Models for Generative Modeling of Short and Long Time Series
链接:https://neurips.cc/virtual/2024/poster/96819
作者:Ilan Naiman · Nimrod Berman · Itai Pemper · Idan Arbiv · Gal Fadlon · Omer Asher · Omri Azencot
关键词:分类(长时),判别(短时)
32 Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
链接:https://neurips.cc/virtual/2024/poster/93973
arXiv:https://arxiv.org/abs/2408.00041
作者:Junru Chen · Tianyu Cao · Jing Xu · Jiahe Li · Zhilong Chen · Tao Xiao · YANG YANG
关键词:分类
33 Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis
链接:https://neurips.cc/virtual/2024/poster/96575
作者:Qiang Wu · Gechang Yao · Zhixi Feng · Yang Shuyuan
关键词:分析,Transformer
34 Shape analysis for time series
链接:https://neurips.cc/virtual/2024/poster/95718
作者:Thibaut Germain · Samuel Gruffaz · Charles Truong · Alain Durmus · Laurent Oudre
关键词:分析,生理时序,无监督
35 UNITS: A Unified Multi-Task Time Series Model
链接:https://neurips.cc/virtual/2024/poster/93709
arXiv:https://arxiv.org/abs/2403.00131
代码:https://github.com/mims-harvard/UniTS
作者:Shanghua Gao · Teddy Koker · Owen Queen · Tom Hartvigsen · Theodoros Tsiligkaridis · Marinka Zitnik
关键词:多任务,基础模型
36 Large Pre-trained time series models for cross-domain Time series analysis tasks
链接:https://neurips.cc/virtual/2024/poster/93205
arXiv:https://arxiv.org/abs/2311.11413
代码:https://github.com/kage08/SegmentTS/
作者:Harshavardhan Prabhakar Kamarthi · B. Aditya Prakash
关键词:分析,跨域,预训练
37 Segment, Shuffle, and Stitch: A Simple Mechanism for Improving Time-Series Representations
链接:https://neurips.cc/virtual/2024/poster/92935
arXiv:https://arxiv.org/abs/2405.20082
代码:https://github.com/shivam-grover/S3-TimeSeries
作者:Shivam Grover · Amin Jalali · Ali Etemad
关键词:表示学习
38 Task-oriented Time Series Imputation Evaluation via Generalized Representers
链接:https://neurips.cc/virtual/2024/poster/93717
代码:https://github.com/hkuedl/Task-Oriented-Imputation
作者:Zhixian Wang · Linxiao Yang · Liang Sun · Qingsong Wen · Yi Wang
关键词:插补,评估方法
39 Exploiting Representation Curvature for Boundary Detection in Time Series
链接:https://neurips.cc/virtual/2024/poster/94837
作者:Yooju Shin · Jaehyun Park · Susik Yoon · Hwanjun Song · Byung Suk Lee · Jae-Gil Lee
关键词:边界检测
40 Learning diverse causally emergent representations from time series data
链接:https://neurips.cc/virtual/2024/poster/92973
作者:David McSharry · Christos Kaplanis · Fernando Rosas · Pedro A.M Mediano
关键词:因果涌现
41 SDformer: Similarity-driven Discrete Transformer For Time Series Generation
链接:https://neurips.cc/virtual/2024/poster/94642
作者:Zhicheng Chen · FENG SHIBO · Zhong Zhang · Xi Xiao · Xingyu Gao · Peilin Zhao
关键词:时间序列生成,离散Transformer
42 FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation
链接:https://neurips.cc/virtual/2024/poster/96595
作者:Asadullah Hill Galib · Pang-Ning Tan · Lifeng Luo
关键词:时间序列生成,条件扩散模型
43 ANT: Adaptive Noise Schedule for Time Series Diffusion Models
链接:https://neurips.cc/virtual/2024/poster/96850
作者:Seunghan Lee · Kibok Lee · Taeyoung Park
关键词:扩散模型,自适应噪声
44 Trajectory Flow Matching with Applications to Clinical Time Series Modelling
链接:https://neurips.cc/virtual/2024/poster/94212
作者:Xi (Nicole) Zhang · Yuan Pu · Yuki Kawamura · Andrew Loza · Yoshua Bengio · Dennis Shung · Alexander Tong
关键词:建模,临床时间序列,流匹配
45 Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
链接:https://neurips.cc/virtual/2024/poster/93680
arXiv:https://arxiv.org/abs/2406.04320
作者:Ali Behrouz · Michele Santacatterina · Ramin Zabih
关键词:建模,状态空间模型
46 Reinforced Cross-Domain Knowledge Distillation on Time Series Data
链接:https://neurips.cc/virtual/2024/poster/93330
作者:QING XU · Min Wu · Xiaoli Li · Kezhi Mao · Zhenghua Chen
关键词:知识蒸馏,无监督域适应
47 Boosting Transferability and Discriminability for Time Series Domain Adaptation
链接:https://neurips.cc/virtual/2024/poster/94429
作者:Mingyang Liu · Xinyang Chen · Yang Shu · Xiucheng Li · Weili Guan · Liqiang Nie
关键词:域适应,迁移性,判别性
48 Towards Editing Time Series
链接:https://neurips.cc/virtual/2024/poster/93468
作者:Baoyu Jing · Shuqi Gu · Tianyu Chen · Zhiyu Yang · Dongsheng Li · Jingrui He · Kan Ren
关键词:时间序列编辑,合成时间序列
49 Conformalized Time Series with Semantic Features
链接:https://neurips.cc/virtual/2024/poster/95653
作者:Baiting Chen · Zhimei Ren · Lu Cheng
关键词:共形预测,分布偏移
50 ChronoEpilogi: Scalable Time Series Selection with Multiple Solutions
链接:https://neurips.cc/virtual/2024/poster/93042
作者:Etienne Vareille · Michele Linardi · Vassilis Christophides · Ioannis Tsamardinos
关键词:时间序列选择
51 Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
链接:https://neurips.cc/virtual/2024/poster/93348
作者:Giangiacomo Mercatali · Andre Freitas · Jie Chen
关键词:不规则时间序列,因果,常微分方程
52 Tri-Level Navigator: LLM-Empowered Tri-Level Learning for Time Series OOD Generalization
链接:https://neurips.cc/virtual/2024/poster/94588
作者:Chengtao Jian · Kai Yang · Yang Jiao
关键词:分布外泛化,LLM
53 UniMTS: Unified Pre-training for Motion Time Series
链接:https://neurips.cc/virtual/2024/poster/96073
作者:Xiyuan Zhang · Diyan Teng · Ranak Roy Chowdhury · Shuheng Li · Dezhi Hong · Rajesh Gupta · Jingbo Shang
关键词:运动时间序列,预训练
54 IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
链接:https://neurips.cc/virtual/2024/poster/97776
arXiv:https://arxiv.org/abs/2405.16069
代码:https://github.com/Healthy-AI/IncomeSCM
作者:Fredrik Johansson(独立作者)
关键词:因果估计,模拟器
55 Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification
链接:https://neurips.cc/virtual/2024/poster/93940
arXiv:https://arxiv.org/abs/2405.19363
代码:https://github.com/DL4mHealth/Medformer
作者:Yihe Wang · Nan Huang · Taida Li · Yujun Yan · Xiang Zhang
关键词:分类,医疗时间序列
56 Abstracted Shapes as Tokens - A Generalizable and Interpretable Model for Time-series Classification
链接:https://neurips.cc/virtual/2024/poster/93522
作者:Yunshi Wen · Tengfei Ma · Lily Weng · Lam Nguyen · Anak Agung Julius
关键词:分类,可解释性,泛化性
D&B Track
57 The Elephant in the Room: Towards A Reliable Time-Series Anomaly Detection Benchmark
链接:https://neurips.cc/virtual/2024/poster/97690
代码:https://github.com/TheDatumOrg/TSB-AD
作者:Qinghua Liu · John Paparrizos
关键词:异常检测,benchmark
58 Building Timeseries Dataset: Empowering Large-Scale Building Analytics
链接:https://neurips.cc/virtual/2024/poster/97839
arXiv:https://arxiv.org/abs/2406.08990
代码:https://github.com/cruiseresearchgroup/DIEF_BTS
作者:Arian Prabowo · Xiachong LIN · Imran Razzak · Hao Xue · Emily Yap · Matthew Amos · Flora Salim
关键词:建筑时间序列,数据集,metadata
59 Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis
链接:https://neurips.cc/virtual/2024/poster/97582
arXiv:https://arxiv.org/abs/2406.08627
library代码:https://github.com/AdityaLab/MM-TSFlib
dataset 代码:https://github.com/AdityaLab/Time-MMD
作者:Haoxin Liu · Shangqing Xu · Zhiyuan Zhao · Lingkai Kong · Harshavardhan Prabhakar Kamarthi · Aditya Sasanur · Megha Sharma · Jiaming Cui · Qingsong Wen · Chao Zhang · B. Aditya Prakash
关键词:数据集,分析,多模态,多域
60 TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
链接:https://neurips.cc/virtual/2024/poster/97532
arXiv:https://arxiv.org/abs/2305.11567
作者:Alexander Nikitin · Letizia Iannucci · Samuel Kaski
关键词:时间序列生成,合成时间序列,框架
61 ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons
链接:https://neurips.cc/virtual/2024/poster/97527
arXiv:https://arxiv.org/abs/2310.07446
代码:https://github.com/microsoft/ProbTS
作者:Jiawen Zhang · Xumeng Wen · Zhenwei Zhang · Shun Zheng · Jia Li · Jiang Bian
关键词:概率预测,benchmark
neurips.cc/virtual/2024/poster/97532
arXiv:https://arxiv.org/abs/2305.11567
作者:Alexander Nikitin · Letizia Iannucci · Samuel Kaski
关键词:时间序列生成,合成时间序列,框架
[外链图片转存中…(img-ZWL3OAEG-1729847739055)]
61 ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons
链接:https://neurips.cc/virtual/2024/poster/97527
arXiv:https://arxiv.org/abs/2310.07446
代码:https://github.com/microsoft/ProbTS
作者:Jiawen Zhang · Xumeng Wen · Zhenwei Zhang · Shun Zheng · Jia Li · Jiang Bian
关键词:概率预测,benchmark
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)