对应B站视频:

Redis面试篇-01.Redis主从-搭建主从集群_哔哩哔哩_bilibili

1.Redis主从

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

1.1.主从集群结构

下图就是一个简单的Redis主从集群结构:

如图所示,集群中有一个master节点、两个slave节点(现在叫replica)。当我们通过Redis的Java客户端访问主从集群时,应该做好路由:

  • 如果是写操作,应该访问master节点,master会自动将数据同步给两个slave节点

  • 如果是读操作,建议访问各个slave节点,从而分担并发压力

1.2.搭建主从集群

我们会在同一个虚拟机中利用3个Docker容器来搭建主从集群,容器信息如下:

容器名
角色
IP
映射端口

r1

master

192.168.22.88(自己的虚拟机ip)

7001

r2

slave

192.168.22.88(自己的虚拟机ip)

7002

r3

slave

192.168.22.88(自己的虚拟机ip)

7003

1.2.1.启动多个Redis实例

文章结尾资料提供的docker-compose文件来构建主从集群:

文件内容如下:

version: "3.2"

services:
  r1:
    image: redis
    container_name: r1
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7001"]
  r2:
    image: redis
    container_name: r2
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7002"]
  r3:
    image: redis
    container_name: r3
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7003"]

 将其上传至虚拟机的/root/redis目录下:

执行命令,运行集群:

docker compose up -d

 结果:

 查看docker容器,发现都正常启动了:

由于采用的是host模式,我们看不到端口映射。不过能直接在宿主机通过ps命令查看到Redis进程: 

1.2.2.建立集群

虽然我们启动了3个Redis实例,但是它们并没有形成主从关系。我们需要通过命令来配置主从关系:

# Redis5.0以前
slaveof <masterip> <masterport>
# Redis5.0以后
replicaof <masterip> <masterport>

有临时和永久两种模式:

  • 永久生效:在redis.conf文件中利用slaveof命令指定master节点

  • 临时生效:直接利用redis-cli控制台输入slaveof命令,指定master节点

我们测试临时模式,首先连接r2,让其以r1为master

# 连接r2
docker exec -it r2 redis-cli -p 7002
# 认r1主,也就是7001
slaveof 192.168.22.88 7001

然后连接r3,让其以r1为master

# 连接r3
docker exec -it r3 redis-cli -p 7003
# 认r1主,也就是7001
slaveof 192.168.22.88 7001

然后连接r1,查看集群状态:

# 连接r1
docker exec -it r1 redis-cli -p 7001
# 查看集群状态
info replication

结果如下:

可以看到,当前节点r1:7001的角色是master,有两个slave与其连接:

  • slave0port7002,也就是r2节点

  • slave1port7003,也就是r3节点

1.2.3.测试

依次在r1r2r3节点上执行下面命令:

set key 123

get key

 你会发现,只有在r1这个节点上可以执行set命令(写操作),其它两个节点只能执行get命令(读操作)。也就是说读写操作已经分离了。

1.3.主从同步原理

在刚才的主从测试中,我们发现r1上写入Redis的数据,在r2r3上也能看到,这说明主从之间确实完成了数据同步。

那么这个同步是如何完成的呢?

1.3.1.全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

这里有一个问题,master如何得知salve是否是第一次来同步呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,replid一致则是同一数据集。每个master都有唯一的replidslave则会继承master节点的replid

  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slaveoffset小于masteroffset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id offsetmaster才可以判断到底需要同步哪些数据。

由于我们在执行slaveof命令之前,所有redis节点都是master,有自己的replidoffset

当我们第一次执行slaveof命令,与master建立主从关系时,发送的replidoffset是自己的,与master肯定不一致。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replidoffset都发送给这个slaveslave保存这些信息到本地。自此以后slavereplid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致。流程如图:

完整流程描述:

  • slave节点请求增量同步

  • master节点判断replid,发现不一致,拒绝增量同步

  • master将完整内存数据生成RDB,发送RDBslave

  • slave清空本地数据,加载masterRDB

  • masterRDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave

  • slave执行接收到的命令,保持与master之间的同步

来看下r1节点的运行日志:

再看下r2节点执行replicaof命令时的日志: 与我们描述的完全一致。

1.3.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

那么master怎么知道slave与自己的数据差异在哪里呢?

1.3.3.repl_baklog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令及offset,包括master当前的offset,和slave已经拷贝到的offset

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

直到数组被填满:

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分:

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset

如果master继续写入新数据,master的offset就会覆盖repl_baklog中旧的数据,直到将slave现在的offset也覆盖:

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步

repl_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导致尚未备份的数据被覆盖,则无法基于repl_baklog做增量同步,只能再次全量同步。

1.4.主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。

  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO

  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步

  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主-从-从架构图:

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。

  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时

  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

.Redis哨兵

主从结构中master节点的作用非常重要,一旦故障就会导致集群不可用。那么有什么办法能保证主从集群的高可用性呢?

2.1.哨兵工作原理

Redis提供了哨兵Sentinel)机制来监控主从集群监控状态,确保集群的高可用性。

2.1.1.哨兵作用

哨兵集群作用原理图:

哨兵的作用如下:

  • 状态监控Sentinel 会不断检查您的masterslave是否按预期工作

  • 故障恢复(failover):如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后会成为slave

  • 状态通知Sentinel充当Redis客户端的服务发现来源,当集群发生failover时,会将最新集群信息推送给Redis的客户端

那么问题来了,Sentinel怎么知道一个Redis节点是否宕机呢?

2.1.2.状态监控

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个节点发送ping命令,并通过实例的响应结果来做出判断:

  • 主观下线(sdown):如果某sentinel节点发现某Redis节点未在规定时间响应,则认为该节点主观下线。

  • 客观下线(odown):若超过指定数量(通过quorum设置)的sentinel都认为该节点主观下线,则该节点客观下线。quorum值最好超过Sentinel节点数量的一半,Sentinel节点数量至少3台。

如图:

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过down-after-milliseconds * 10则会排除该slave节点

  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举(默认都是1)。

  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高

  • 最后是判断slave节点的run_id大小,越小优先级越高(通过info server可以查看run_id)。

对应的官方文档如下:High availability with Redis Sentinel | Docs

问题来了,当选出一个新的master后,该如何实现身份切换呢?

大概分为两步:

  • 在多个sentinel中选举一个leader

  • leader执行failover

2.1.3.选举leader

首先,Sentinel集群要选出一个执行failover的Sentinel节点,可以成为leader。要成为leader要满足两个条件:

  • 最先获得超过半数的投票

  • 获得的投票数不小于quorum

而sentinel投票的原则有两条:

  • 优先投票给目前得票最多的

  • 如果目前没有任何节点的票,就投给自己

比如有3个sentinel节点,s1s2s3,假如s2先投票:

  • 此时发现没有任何人在投票,那就投给自己。s2得1票

  • 接着s1s3开始投票,发现目前s2票最多,于是也投给s2s2得3票

  • s2称为leader,开始故障转移

不难看出,谁先投票,谁就会称为leader,那什么时候会触发投票呢?

答案是第一个确认master客观下线的人会立刻发起投票,一定会成为leader

OK,sentinel找到leader以后,该如何完成failover呢?

2.1.4.failover

我们举个例子,有一个集群,初始状态下7001为master,7002和7003为slave

假如master发生故障,slave1当选。则故障转移的流程如下:

1)sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master

 2)sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些节点成为新master,也就是7002slave节点,开始从新的master上同步数据。

3)最后,当故障节点恢复后会接收到哨兵信号,执行slaveof 192.168.150.101 7002命令,成为slave

2.2.搭建哨兵集群

首先,我们停掉之前的redis集群:

# 老版本DockerCompose
docker-compose down

# 新版本Docker
docker compose down

 然后找到文章结尾资料提供的sentinel.conf文件:

其内容如下:

sentinel announce-ip "192.168.150.101"
sentinel monitor hmaster 192.168.150.101 7001 2
sentinel down-after-milliseconds hmaster 5000
sentinel failover-timeout hmaster 60000

说明:

  • sentinel announce-ip "192.168.150.101":声明当前sentinel的ip

  • sentinel monitor hmaster 192.168.150.101 7001 2:指定集群的主节点信息

    • hmaster:主节点名称,自定义,任意写

    • 192.168.150.101 7001:主节点的ip和端口

    • 2:认定master下线时的quorum

  • sentinel down-after-milliseconds hmaster 5000:声明master节点超时多久后被标记下线

  • sentinel failover-timeout hmaster 60000:在第一次故障转移失败后多久再次重试

我们在虚拟机的/root/redis目录下新建3个文件夹:s1s2s3:

将文章结尾资料提供的sentinel.conf文件分别拷贝一份到3个文件夹中。

接着修改docker-compose.yaml文件,内容如下:

version: "3.2"

services:
  r1:
    image: redis
    container_name: r1
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7001"]
  r2:
    image: redis
    container_name: r2
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7002", "--slaveof", "192.168.150.101", "7001"]
  r3:
    image: redis
    container_name: r3
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7003", "--slaveof", "192.168.150.101", "7001"]
  s1:
    image: redis
    container_name: s1
    volumes:
      - /root/redis/s1:/etc/redis
    network_mode: "host"
    entrypoint: ["redis-sentinel", "/etc/redis/sentinel.conf", "--port", "27001"]
  s2:
    image: redis
    container_name: s2
    volumes:
      - /root/redis/s2:/etc/redis
    network_mode: "host"
    entrypoint: ["redis-sentinel", "/etc/redis/sentinel.conf", "--port", "27002"]
  s3:
    image: redis
    container_name: s3
    volumes:
      - /root/redis/s3:/etc/redis
    network_mode: "host"
    entrypoint: ["redis-sentinel", "/etc/redis/sentinel.conf", "--port", "27003"]

 直接运行命令,启动集群:

docker compose up -d

运行结果:

我们以s1节点为例,查看其运行日志:

1:X 22 Jul 2024 06:58:56.353 # Sentinel ID is 024bffcdce1c15db37b51d80201997c019f3f8ae
1:X 22 Jul 2024 06:58:56.353 # +monitor master hmaster 192.168.22.88 7001 quorum 2
1:X 22 Jul 2024 06:58:56.360 * +slave slave 192.168.22.88:7002 192.168.22.88 7002 @ hmaster 192.168.22.88 7001
1:X 22 Jul 2024 06:58:56.364 * +slave slave 192.168.22.88:7003 192.168.22.88 7003 @ hmaster 192.168.22.88 7001
1:X 22 Jul 2024 06:58:58.355 * +sentinel sentinel 91e7ebf5e5963fdf2dd184be0312632aee998c8c 192.168.22.88 27003 @ hmaster 192.168.22.88 7001
1:X 22 Jul 2024 06:58:58.367 * +sentinel sentinel 9d3e08cf2301b7c1745996e57e91be2d38c2e029 192.168.22.88 27002 @ hmaster 192.168.22.88 7001

可以看到sentinel已经联系到了7001这个节点,并且与其它几个哨兵也建立了链接。哨兵信息如下:

  • 27001Sentinel ID024bffcdce1c15db37b51d80201997c019f3f8ae

  • 27002Sentinel ID91e7ebf5e5963fdf2dd184be0312632aee998c8c

  • 27003Sentinel ID9d3e08cf2301b7c1745996e57e91be2d38c2e029

2.3.演示failover

接下来,我们演示一下当主节点故障时,哨兵是如何完成集群故障恢复(failover)的。

我们连接7001这个master节点,然后通过命令让其休眠60秒,模拟宕机:

# 连接7001这个master节点,通过sleep模拟服务宕机,60秒后自动恢复
docker exec -it r1 redis-cli -p 7001 DEBUG sleep 60

稍微等待一段时间后,会发现sentinel节点触发了failover

2.4.总结

Sentinel的三个作用是什么?

  • 集群监控

  • 故障恢复

  • 状态通知

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线(sdown

  • 如果大多数sentinel都认为实例主观下线,则判定服务客观下线(odown

故障转移步骤有哪些?

  • 首先要在sentinel中选出一个leader,由leader执行failover

  • 选定一个slave作为新的master,执行slaveof noone,切换到master模式

  • 然后让所有节点都执行slaveof 新master

  • 修改故障节点配置,添加slaveof 新master

sentinel选举leader的依据是什么?

  • 票数超过sentinel节点数量1半

  • 票数超过quorum数量

  • 一般情况下最先发起failover的节点会当选

sentinel从slave中选取master的依据是什么?

  • 首先会判断slave节点与master节点断开时间长短,如果超过down-after-milliseconds * 10则会排除该slave节点

  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举(默认都是1)。

  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高

  • 最后是判断slave节点的run_id大小,越小优先级越高(通过info server可以查看run_id)。

2.5.RedisTemplate连接哨兵集群

分为三步:

  • 1)引入依赖

  • 2)配置哨兵地址

  • 3)配置读写分离

2.5.1.引入依赖

就是SpringDataRedis的依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

2.5.2.配置哨兵地址

连接哨兵集群与传统单点模式不同,不再需要设置每一个redis的地址,而是直接指定哨兵地址:

spring:
  redis:
    sentinel:
      master: hmaster # 集群名
      nodes: # 哨兵地址列表
        - 192.168.150.101:27001
        - 192.168.150.101:27002
        - 192.168.150.101:27003

2.5.3.配置读写分离

最后,还要配置读写分离,让java客户端将写请求发送到master节点,读请求发送到slave节点。定义一个bean即可:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
    return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取

  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取slave

  • REPLICA:从slave节点读取

  • REPLICA_PREFERRED:优先从slave节点读取,所有的slave都不可用才读取master

3.Redis分片集群

主从模式可以解决高可用、高并发读的问题。但依然有两个问题没有解决:

  • 海量数据存储

  • 高并发写

要解决这两个问题就需要用到分片集群了。分片的意思,就是把数据拆分存储到不同节点,这样整个集群的存储数据量就更大了。

Redis分片集群的结构如图:

分片集群特征:

  • 集群中有多个master,每个master保存不同分片数据 ,解决海量数据存储问题

  • 每个master都可以有多个slave节点 ,确保高可用

  • master之间通过ping监测彼此健康状态 ,类似哨兵作用

  • 客户端请求可以访问集群任意节点,最终都会被转发到数据所在节点

3.1.搭建分片集群

Redis分片集群最少也需要3个master节点,由于我们的机器性能有限,我们只给每个master配置1个slave,形成最小的分片集群:

 计划部署的节点信息如下:

容器名角色IP映射端口
r1master192.168.150.1017001
r2master192.168.150.1017002
r3master192.168.150.1017003
r4slave192.168.150.1017004
r5slave192.168.150.1017005
r6slave192.168.150.1017006

3.1.1.集群配置

分片集群中的Redis节点必须开启集群模式,一般在配置文件中添加下面参数:

port 7000
cluster-enabled yes
cluster-config-file nodes.conf
cluster-node-timeout 5000
appendonly yes

其中有3个我们没见过的参数:

  • cluster-enabled:是否开启集群模式

  • cluster-config-file:集群模式的配置文件名称,无需手动创建,由集群自动维护

  • cluster-node-timeout:集群中节点之间心跳超时时间

一般搭建部署集群肯定是给每个节点都配置上述参数,不过考虑到我们计划用docker-compose部署,因此可以直接在启动命令中指定参数,偷个懒。

在虚拟机的/root目录下新建一个redis-cluster目录,然后在其中新建一个docker-compose.yaml文件,内容如下:

version: "3.2"

services:
  r1:
    image: redis
    container_name: r1
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7001", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]
  r2:
    image: redis
    container_name: r2
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7002", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]
  r3:
    image: redis
    container_name: r3
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7003", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]
  r4:
    image: redis
    container_name: r4
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7004", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]
  r5:
    image: redis
    container_name: r5
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7005", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]
  r6:
    image: redis
    container_name: r6
    network_mode: "host"
    entrypoint: ["redis-server", "--port", "7006", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]

注意:使用Docker部署Redis集群,network模式必须采用host

3.1.2.启动集群

进入/root/redis-cluster目录,使用命令启动redis:

docker compose up -d

启动成功,可以通过命令查看启动进程:

ps -ef | grep redis
# 结果:
root       4822   4743  0 14:29 ?        00:00:02 redis-server *:7002 [cluster]
root       4827   4745  0 14:29 ?        00:00:01 redis-server *:7005 [cluster]
root       4897   4778  0 14:29 ?        00:00:01 redis-server *:7004 [cluster]
root       4903   4759  0 14:29 ?        00:00:01 redis-server *:7006 [cluster]
root       4905   4775  0 14:29 ?        00:00:02 redis-server *:7001 [cluster]
root       4912   4732  0 14:29 ?        00:00:01 redis-server *:7003 [cluster]

可以发现每个redis节点都以cluster模式运行。不过节点与节点之间并未建立连接。

接下来,我们使用命令创建集群:

# 进入任意节点容器
docker exec -it r1 bash
# 然后,执行命令
redis-cli --cluster create --cluster-replicas 1 \
192.168.22.88:7001 192.168.22.88:7002 192.168.22.881:7003 \
192.168.22.88:7004 192.168.22.88:7005 192.168.22.88:7006

命令说明:

  • redis-cli --cluster:代表集群操作命令

  • create:代表是创建集群

  • --cluster-replicas 1 :指定集群中每个master的副本个数为1

    • 此时节点总数 ÷ (replicas + 1) 得到的就是master的数量n。因此节点列表中的前n个节点就是master,其它节点都是slave节点,随机分配到不同master

输入命令后控制台会弹出下面的信息:

这里展示了集群中masterslave节点分配情况,并询问你是否同意。节点信息如下:

  • 7001master,节点id后6位是da134f

  • 7002master,节点id后6位是862fa0

  • 7003master,节点id后6位是ad5083

  • 7004slave,节点id后6位是391f8b,认ad5083(7003)为master

  • 7005slave,节点id后6位是e152cd,认da134f(7001)为master

  • 7006slave,节点id后6位是4a018a,认862fa0(7002)为master

输入yes然后回车。会发现集群开始创建,并输出下列信息:

接着,我们可以通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

结果: 

3.2.散列插槽

数据要分片存储到不同的Redis节点,肯定需要有分片的依据,这样下次查询的时候才能知道去哪个节点查询。很多数据分片都会采用一致性hash算法。而Redis则是利用散列插槽(hash slot)的方式实现数据分片。

详见官方文档:Scale with Redis Cluster | Docs

 在Redis集群中,共有16384个hash slots,集群中的每一个master节点都会分配一定数量的hash slots。具体的分配在集群创建时就已经指定了:

如图中所示:

  • Master[0],本例中就是7001节点,分配到的插槽是0~5460

  • Master[1],本例中就是7002节点,分配到的插槽是5461~10922

  • Master[2],本例中就是7003节点,分配到的插槽是10923~16383

当我们读写数据时,Redis基于CRC16 算法对keyhash运算,得到的结果与16384取余,就计算出了这个keyslot值。然后到slot所在的Redis节点执行读写操作。

不过hash slot的计算也分两种情况:

  • key中包含{}时,根据{}之间的字符串计算hash slot

  • key中不包含{}时,则根据整个key字符串计算hash slot

例如:

  • key是user,则根据user来计算hash slot

  • key是user:{age},则根据age来计算hash slot

我们来测试一下,先于7001建立连接:

# 进入容器
docker exec -it r1 bash
# 进入redis-cli
redis-cli -p 7001
# 测试
set user jack

 报错:

提示我们MOVED 5474,其实就是经过计算,得出user这个keyhash slot5474,而5474是在7002节点,不能在7001上写入!!

说好的任意节点都可以读写呢?

这是因为我们连接的方式有问题,连接集群时,要加-c参数:

# 通过7001连接集群
redis-cli -c -p 7001
# 存入数据
set user jack

 结果如下:

可以看到,客户端自动跳转到了5474这个slot所在的7002节点。

现在,我们添加一个新的key,这次加上{}

# 试一下key中带{}
set user:{age} 21

# 再试一下key中不带{}
set age 20

结果如下:

3.3.故障转移

分片集群的节点之间会互相通过ping的方式做心跳检测,超时未回应的节点会被标记为下线状态。当发现master下线时,会将这个master的某个slave提升为master。

我们先打开一个控制台窗口,利用命令监测集群状态:

watch docker exec -it r1 redis-cli -p 7001 cluster nodes

命令前面的watch可以每隔一段时间刷新执行结果,方便我们实时监控集群状态变化。

接着,我们故技重施,利用命令让某个master节点休眠。比如这里我们让7002节点休眠,打开一个新的ssh控制台,输入下面命令:

docker exec -it r4 redis-cli -p 7004 DEBUG sleep 30

可以观察到,集群发现7004宕机,标记为下线: 

过了一段时间后,7004原本的小弟7002变成了master

而7004被标记为slave,而且其master正好是7002,主从地位互换。 

3.4.总结

Redis分片集群如何判断某个key应该在哪个实例?

  • 将16384个插槽分配到不同的实例

  • 根据key计算哈希值,对16384取余

  • 余数作为插槽,寻找插槽所在实例即可

如何将同一类数据固定的保存在同一个Redis实例?

  • Redis计算key的插槽值时会判断key中是否包含{},如果有则基于{}内的字符计算插槽

  • 数据的key中可以加入{类型},例如key都以{typeId}为前缀,这样同类型数据计算的插槽一定相同

3.5.Java客户端连接分片集群(选学)

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致,参考2.5节

1)引入redis的starter依赖

2)配置分片集群地址

3)配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

spring:
  redis:
    cluster:
      nodes:
        - 192.168.150.101:7001
        - 192.168.150.101:7002
        - 192.168.150.101:7003
        - 192.168.150.101:8001
        - 192.168.150.101:8002
        - 192.168.150.101:8003

资料获取

链接:https://pan.baidu.com/s/1z08p65lEyWvkd7IAQ2eDyQ 
提取码:6666

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐