分块矩阵行列式的性质证明
性质性质一∣AOOB∣=∣A∗OB∣=∣AO∗B∣=∣A∣⋅∣B∣\left|\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\\boldsymbol{O} & \boldsymbol{B}\end{array}\right|=\left|\begin{array}{ll}\boldsymbol{A} & * \\\bol
性质
性质一
∣ A O O B ∣ = ∣ A ∗ O B ∣ = ∣ A O ∗ B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \left|\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B} \end{array}\right|=\left|\begin{array}{ll} \boldsymbol{A} & * \\ \boldsymbol{O} & \boldsymbol{B} \end{array}\right|=\left|\begin{array}{cc} \boldsymbol{A} & \boldsymbol{O} \\ *& \boldsymbol{B} \end{array}\right|=|\boldsymbol{A}| \cdot|\boldsymbol{B}| ∣∣∣∣AOOB∣∣∣∣=∣∣∣∣AO∗B∣∣∣∣=∣∣∣∣A∗OB∣∣∣∣=∣A∣⋅∣B∣
性质二
设
A
,
B
\boldsymbol{A}, \boldsymbol{B}
A,B分别是m阶和n阶矩阵,则
∣
O
A
B
O
∣
=
(
−
1
)
m
n
∣
A
∣
⋅
∣
B
∣
\left|\begin{array}{ll} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{array}\right|=(-1)^{m n}|\boldsymbol{A}| \cdot|\boldsymbol{B}|
∣∣∣∣OBAO∣∣∣∣=(−1)mn∣A∣⋅∣B∣
证明
证明一
对于性质一,我们只证
∣
A
O
∗
B
∣
=
∣
A
∣
⋅
∣
B
∣
\left|\begin{array}{cc} \boldsymbol{A} & \boldsymbol{O} \\ *& \boldsymbol{B} \end{array}\right|=|\boldsymbol{A}| \cdot|\boldsymbol{B}|
∣∣∣∣A∗OB∣∣∣∣=∣A∣⋅∣B∣
其他同理可得
设
D
=
∣
a
11
⋯
a
1
k
⋮
⋮
0
a
k
1
⋯
a
k
k
c
11
⋯
c
1
k
b
11
⋯
b
1
n
⋮
⋮
⋮
⋮
c
n
1
⋯
c
n
k
b
n
1
⋯
b
n
n
∣
D=\left|\begin{array}{cccccc} a_{11} & \cdots & a_{1 k} & & & \\ \vdots & & \vdots & & 0 & \\ a_{k 1} & \cdots & a_{k k} & & & \\ c_{11} & \cdots & c_{1 k} & b_{11} & \cdots & b_{1 n} \\ \vdots & & \vdots & \vdots & & \vdots \\ c_{n 1} & \cdots & c_{n k} & b_{n 1} & \cdots & b_{n n} \end{array}\right|
D=∣∣∣∣∣∣∣∣∣∣∣∣∣∣a11⋮ak1c11⋮cn1⋯⋯⋯⋯a1k⋮akkc1k⋮cnkb11⋮bn10⋯⋯b1n⋮bnn∣∣∣∣∣∣∣∣∣∣∣∣∣∣
D
1
=
∣
a
11
⋯
a
1
k
⋮
⋮
a
k
1
⋯
a
k
k
∣
D_{1}=\left|\begin{array}{ccc} a_{11} & \cdots & a_{1 k} \\ \vdots & & \vdots \\ a_{k 1} & \cdots & a_{k k} \end{array}\right|
D1=∣∣∣∣∣∣∣a11⋮ak1⋯⋯a1k⋮akk∣∣∣∣∣∣∣
D
2
=
∣
b
11
⋯
b
1
n
⋮
⋮
b
n
1
⋯
b
n
n
∣
D_{2}=\left|\begin{array}{ccc} b_{11} & \cdots & b_{1 n} \\ \vdots & & \vdots \\ b_{n 1} & \cdots & b_{n n} \end{array}\right|
D2=∣∣∣∣∣∣∣b11⋮bn1⋯⋯b1n⋮bnn∣∣∣∣∣∣∣
通过行变换把
D
1
D_{1}
D1化成下三角行列式
D
1
=
∣
p
11
0
⋮
⋱
p
k
1
⋯
p
k
k
∣
=
p
11
⋯
p
k
k
D_{1}=\left|\begin{array}{ccc} p_{11} & & 0 \\ \vdots & \ddots & \\ p_{k 1} & \cdots & p_{k k} \end{array}\right|=p_{11} \cdots p_{k k}
D1=∣∣∣∣∣∣∣p11⋮pk1⋱⋯0pkk∣∣∣∣∣∣∣=p11⋯pkk
同理,通过列变换把
D
2
D_{2}
D2也化成下三角行列式
D
2
=
∣
q
11
0
⋮
⋱
q
n
1
⋯
q
n
n
∣
=
q
11
⋯
q
n
n
D_{2}=\left|\begin{array}{ccc} q_{11} & & 0 \\ \vdots & \ddots & \\ q_{n 1} & \cdots & q_{n n} \end{array}\right|=q_{11} \cdots q_{n n}
D2=∣∣∣∣∣∣∣q11⋮qn1⋱⋯0qnn∣∣∣∣∣∣∣=q11⋯qnn
对行列式
D
D
D的前
k
k
k行进行行变换,后n列进行列变换成
D
=
∣
p
11
⋮
⋱
0
p
k
1
⋯
p
k
k
c
11
⋯
c
1
k
q
11
⋮
⋮
⋮
⋱
c
n
1
⋯
c
n
k
q
n
1
⋯
q
u
n
∣
D=\left|\begin{array}{cccccc} p_{11} & & & & & \\ \vdots & \ddots & & & 0 & \\ p_{k 1} & \cdots & p_{k k} & & & \\ c_{11} & \cdots & c_{1 k} & q_{11} & & \\ \vdots & & \vdots & \vdots & \ddots & \\ c_{n 1} & \cdots & c_{n k} & q_{n 1} & \cdots & q_{u n} \end{array}\right|
D=∣∣∣∣∣∣∣∣∣∣∣∣∣∣p11⋮pk1c11⋮cn1⋱⋯⋯⋯pkkc1k⋮cnkq11⋮qn10⋱⋯qun∣∣∣∣∣∣∣∣∣∣∣∣∣∣
由下三角行列式的性质可得
D
=
D
1
D
2
D=D_{1} D_{2}
D=D1D2
证明二
设想将
∣
O
A
B
O
∣
\left|\begin{array}{ll}\boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O}\end{array}\right|
∣∣∣∣OBAO∣∣∣∣变为
k
⋅
∣
B
O
O
A
∣
k \cdot \left|\begin{array}{ll}\boldsymbol{B} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}\end{array}\right|
k⋅∣∣∣∣BOOA∣∣∣∣的形式,然后用性质一即可解决。
用冒泡排序的思想将
B
\boldsymbol{B}
B中的每一行依次与
A
\boldsymbol{A}
A中的每一行交换,即可将
B
\boldsymbol{B}
B冒上去,这样总共进行了
m
n
mn
mn次交换,由行列式的性质可得,行列式中任意交换两行要变号,所以
∣
O
A
B
O
∣
=
(
−
1
)
m
n
∣
B
O
O
A
∣
=
(
−
1
)
m
n
∣
A
∣
⋅
∣
B
∣
\left|\begin{array}{ll} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{array}\right|=(-1)^{m n}\left|\begin{array}{ll}\boldsymbol{B} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}\end{array}\right|=(-1)^{m n}|\boldsymbol{A}| \cdot|\boldsymbol{B}|
∣∣∣∣OBAO∣∣∣∣=(−1)mn∣∣∣∣BOOA∣∣∣∣=(−1)mn∣A∣⋅∣B∣
补充:各种排序算法的动画演示
以下为本文用到的冒泡排序的描述与动画演示
参考文献
[1]同济大学数学系. 工程数学线性代数[M]. 高等教育出版社,2018
[2]朱灵 毕道旺. 线性代数[M]. 北京邮电出版社,2019
[3]汤家凤. 线性代数辅导讲义[M]. 中国原子能出版社,2018
[4]https://blog.csdn.net/xiaoxiaojie12321/article/details/81380834
答疑
将
D
1
D_{1}
D1化成下三角的过程中,只对前k行进行行变换。
将
D
2
D_{2}
D2化成下三角的过程中,只对后n列进行列变换。
并不会改变D左下角c的部分。
举个例子
∣
2
1
0
0
3
−
1
0
0
1
2
3
2
5
0
6
2
∣
=
r
1
+
r
2
∣
5
0
0
0
3
−
1
0
0
1
2
3
2
5
0
6
2
∣
=
c
4
−
2
3
d
3
∣
5
0
0
0
3
−
1
0
0
1
2
3
0
5
0
6
−
2
∣
=
5
×
(
−
1
)
×
3
×
(
−
2
)
=
30
\left| \begin{matrix} 2& 1& 0& 0\\ 3& -1& 0& 0\\ 1& 2& 3& 2\\ 5& 0& 6& 2\\ \end{matrix} \right|\xlongequal{r_1+r_2}\left| \begin{matrix} 5& 0& 0& 0\\ 3& -1& 0& 0\\ 1& 2& 3& 2\\ 5& 0& 6& 2\\ \end{matrix} \right|\xlongequal{c_4-\frac{2}{3}d_3}\left| \begin{matrix} 5& 0& 0& 0\\ 3& -1& 0& 0\\ 1& 2& 3& 0\\ 5& 0& 6& -2\\ \end{matrix} \right|=5\times \left( -1 \right) \times 3\times \left( -2 \right) =30
∣∣∣∣∣∣∣∣23151−12000360022∣∣∣∣∣∣∣∣r1+r2∣∣∣∣∣∣∣∣53150−12000360022∣∣∣∣∣∣∣∣c4−32d3∣∣∣∣∣∣∣∣53150−1200036000−2∣∣∣∣∣∣∣∣=5×(−1)×3×(−2)=30
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)