PyTorch LSTM谷歌股价预测(完整代码与训练过程)
基于LSTM模型的股票预测任务,是领域的经典任务之一。这篇文章我将带大家使用这四个开源工具,完成从Google股票数据集的准备、代码编写、可视化训练与预测的全过程。
基于LSTM模型的股票预测任务,是时间序列、量化交易领域的经典任务之一。
这篇文章我将带大家使用SwanLab、PyTroch、Matplotlib、Pandas这四个开源工具,完成从Google股票数据集的准备、代码编写、可视化训练与预测的全过程。
- 代码:完整代码直接看本文第5节
- 数据集:Kaggle
- 实验过程:LSTM谷歌股票预测 - SwanLab
- SwanLab:https://swanlab.cn
- PyTorch:PyTorch官网
1.环境安装
我们需要安装以下这4个Python库:
pandas
torch
matplotlib
swanlab
scikit-learn
一键安装命令:
pip install pandas torch matplotlib swanlab scikit-learn
他们的作用分别是:
-
torch
:torch即PyTorch,是当下最流行的深度学习计算框架,被广泛应用于深度学习模型的构建、训练和推理。代码中用torch
主要用于LSTM网络的构建与训练。 -
pandas
:Pandas是一个专为数据分析和数据处理设计的Python库。它建立在NumPy之上,提供了高性能、易用的数据结构和数据分析工具,特别适合处理表格型数据或异构类型数据。代码中用pandas
主要用于读取股票数据集合。 -
matplotlib
:Matplotlib是一个用于绘制图表和可视化数据的Python库,适用于科学计算、数据分析、机器学习等领域。代码中用matplotlib
主要用于进行最终结果的可视化。 -
swanlab
:一个深度学习实验管理与训练可视化工具,由西安电子科技大学创业团队打造,官网, 融合了Weights & Biases与Tensorboard的特点,可以记录整个实验的超参数、指标、训练环境、Python版本等,并可视化图表,帮助你分析训练的表现。本项目用swanlab主要用于记录训练过程的指标和可视化。
本文的代码测试于torch2.3.0、pandas2.0.3、matplotlib3.8.2、swanlab0.3.8、scikit-learn==1.3.2 更多库版本可查看SwanLab记录的Python环境。
2.下载Google股价数据集
我们使用来自Kaggle的Google股价预测数据集,其中包含了从2016年6月到2021年6月这五年间的每日Google股价数据,一共1200多条。
其中每一条中有14项数据,包括了时间、开盘价、收盘价、高点、低点、交易量等,这里我们只用日期date
和收盘价close
这两项数据来进行股价预测,希望能够让LSTM模型根据前30日的股价,预测下一日的股价。
下载数据集的方式是前往Kaggle,点击右上角黑色的Download按钮下载即可(大小30kB)。
3.构建LSTM模型
这里我们使用了一个2层的LSTM + 1个全连接层,组成一个相对轻量的LSTM网络:
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_size=1, hidden_size1=50, hidden_size2=64, fc1_size=32, fc2_size=16, output_size=1):
super(LSTMModel, self).__init__()
self.lstm1 = nn.LSTM(input_size, hidden_size1, batch_first=True)
self.lstm2 = nn.LSTM(hidden_size1, hidden_size2, batch_first=True)
self.fc1 = nn.Linear(hidden_size2, fc1_size)
self.fc2 = nn.Linear(fc1_size, fc2_size)
self.fc3 = nn.Linear(fc2_size, output_size)
def forward(self, x):
x, _ = self.lstm1(x)
x, _ = self.lstm2(x)
x = self.fc1(x[:, -1, :])
x = self.fc2(x)
x = self.fc3(x)
return x
因为我们只使用股市收盘价这1个数据作为输入,并输出1个预测股价,所以我们将input_size设置为1,output_size也设置为1:
model = LSTMModel(input_size=1, output_size=1)
4.训练超参数
我们用过SwanLab的config参数来管理和控制超参数:
swanlab.init(
project='Google-Stock-Prediction',
experiment_name="LSTM",
description="根据前7天的数据预测下一日股价",
config={
"learning_rate": 1e-3,
"epochs": 100,
"batch_size": 32,
"lookback": 60,
"spilt_ratio": 0.9,
"save_path": "./checkpoint",
"optimizer": "Adam",
},
)
这里可以看到我们所使用的学习率是1e-3,训练100个epoch,batch_size为32,每次输入历史60天的数据(lookback)来预测当前日期的股价,数据集和测试集的比例是9:1, 使用的优化器是Adam。
5.完整代码
相比于逐个模块的讲述,我更喜欢教程提供完整的训练脚本,因为我发现它更容易理解代码的完整流程。所以我就不赘述其他模块,下面直接放我的完整训练脚本。
你的训练目录下会有四个文件:train.py、model.py、data_process.py和GOOG.csv,其中GOOG.csv就是我们下载好的数据集。
model.py:
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_size=1, hidden_size1=50, hidden_size2=64, fc1_size=32, fc2_size=16, output_size=1):
super(LSTMModel, self).__init__()
self.lstm1 = nn.LSTM(input_size, hidden_size1, batch_first=True)
self.lstm2 = nn.LSTM(hidden_size1, hidden_size2, batch_first=True)
self.fc1 = nn.Linear(hidden_size2, fc1_size)
self.fc2 = nn.Linear(fc1_size, fc2_size)
self.fc3 = nn.Linear(fc2_size, output_size)
def forward(self, x):
x, _ = self.lstm1(x)
x, _ = self.lstm2(x)
x = self.fc1(x[:, -1, :])
x = self.fc2(x)
x = self.fc3(x)
return x
data_process.py:
# 对数据集进行处理
from copy import deepcopy as dc
import pandas as pd
from torch.utils.data import Dataset
from sklearn.preprocessing import MinMaxScaler
import torch
import numpy as np
class TimeSeriesDataset(Dataset):
"""
定义数据集类
"""
def __init__(self, X, y):
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, i):
return self.X[i], self.y[i]
def prepare_dataframe_for_lstm(df, n_steps):
"""
处理数据集,使其适用于LSTM模型
"""
df = dc(df)
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
for i in range(1, n_steps+1):
df[f'close(t-{i})'] = df['close'].shift(i)
df.dropna(inplace=True)
return df
def get_dataset(file_path, lookback, split_ratio=0.9):
"""
归一化数据、划分训练集和测试集
"""
data = pd.read_csv(file_path)
data = data[['date','close']]
shifted_df_as_np = prepare_dataframe_for_lstm(data, lookback)
scaler = MinMaxScaler(feature_range=(-1,1))
shifted_df_as_np = scaler.fit_transform(shifted_df_as_np)
X = shifted_df_as_np[:, 1:]
y = shifted_df_as_np[:, 0]
X = dc(np.flip(X,axis=1))
# 划分训练集和测试集
split_index = int(len(X) * split_ratio)
X_train = X[:split_index]
X_test = X[split_index:]
y_train = y[:split_index]
y_test = y[split_index:]
X_train = X_train.reshape((-1, lookback, 1))
X_test = X_test.reshape((-1, lookback, 1))
y_train = y_train.reshape((-1, 1))
y_test = y_test.reshape((-1, 1))
# 转换为Tensor
X_train = torch.tensor(X_train).float()
y_train = torch.tensor(y_train).float()
X_test = torch.tensor(X_test).float()
y_test = torch.tensor(y_test).float()
return scaler, X_train, X_test, y_train, y_test
train.py:
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import swanlab
from copy import deepcopy as dc
import numpy as np
import os
from model import LSTMModel
from data_process import get_stock_dataset
def save_best_model(model, config, epoch):
if not os.path.exists(config.save_path):
os.makedirs(config.save_path)
torch.save(model.state_dict(), os.path.join(config.save_path, 'best_model.pth'))
print(f'Val Epoch: {epoch} - Best model saved at {config.save_path}')
def train(model, train_loader, optimizer, criterion, scheduler):
running_loss = 0
# 训练
for i, batch in enumerate(train_loader):
x_batch, y_batch = batch[0].to(device), batch[1].to(device)
y_pred = model(x_batch)
loss = criterion(y_pred, y_batch)
# print(i, loss.item())
running_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
avg_loss_epoch = running_loss / len(train_loader)
print(f'Epoch: {epoch}, Batch: {i}, Avg. Loss: {avg_loss_epoch}')
swanlab.log({"train/loss": running_loss}, step=epoch)
running_loss = 0
def validate(model, config, test_loader, criterion, epoch, best_loss=None):
model.eval()
val_loss = 0
with torch.no_grad():
for _, batch in enumerate(test_loader):
x_batch, y_batch = batch[0].to(device), batch[1].to(device)
y_pred = model(x_batch)
loss = criterion(y_pred, y_batch)
val_loss += loss.item()
avg_val_loss = val_loss / len(test_loader)
print(f'Epoch: {epoch}, Validation Loss: {avg_val_loss}')
swanlab.log({"val/loss": avg_val_loss}, step=epoch)
if epoch == 1:
best_loss = avg_val_loss
# 保存最佳模型
if avg_val_loss < best_loss:
best_loss = avg_val_loss
save_best_model(model, config, epoch)
return best_loss
def visualize_predictions(train_predictions, val_predictions, scaler, X_train, X_test, y_train, y_test, lookback):
train_predictions = train_predictions.flatten()
val_predictions = val_predictions.flatten()
dummies = np.zeros((X_train.shape[0], lookback+1))
dummies[:,0] = train_predictions
dummies = scaler.inverse_transform(dummies)
train_predictions = dc(dummies[:,0])
dummies = np.zeros((X_test.shape[0], lookback+1))
dummies[:,0] = val_predictions
dummies = scaler.inverse_transform(dummies)
val_predictions = dc(dummies[:,0])
dummies = np.zeros((X_train.shape[0], lookback+1))
dummies[:,0] = y_train.flatten()
dummies = scaler.inverse_transform(dummies)
new_y_train = dc(dummies[:,0])
dummies = np.zeros((X_test.shape[0], lookback+1))
dummies[:,0] = y_test.flatten()
dummies = scaler.inverse_transform(dummies)
new_y_test = dc(dummies[:,0])
# 训练集预测结果可视化
plt.figure(figsize=(10, 6))
plt.plot(new_y_train, color='red', label='Actual Train Close Price')
plt.plot(train_predictions, color='blue', label='Predicted Train Close Price', alpha=0.5)
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.title('(TrainSet) Google Stock Price Prediction with LSTM')
plt.legend()
plt_image = []
plt_image.append(swanlab.Image(plt, caption="TrainSet Price Prediction"))
# 测试集预测结果可视化
plt.figure(figsize=(10, 6))
plt.plot(new_y_test, color='red', label='Actual Test Close Price')
plt.plot(val_predictions, color='blue', label='Predicted Test Close Price', alpha=0.5)
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.title('(TestSet) Google Stock Price Prediction with LSTM')
plt.legend()
plt_image.append(swanlab.Image(plt, caption="TestSet Price Prediction"))
swanlab.log({"Prediction": plt_image})
if __name__ == '__main__':
# 初始化一个SwanLab实验
swanlab.init(
project='Google-Stock-Prediction',
experiment_name="LSTM",
description="基于LSTM模型对Google股票价格数据集的训练与推理",
config={
"learning_rate": 4e-3,
"epochs": 50,
"batch_size": 32,
"lookback": 60,
"trainset_ratio": 0.95,
"save_path": f'./checkpoint/{pd.Timestamp.now()}',
"optimizer": "AdamW",
},
# mode="disabled",
)
config = swanlab.config
device = torch.device('mps')
# ------------------- 定义数据集 -------------------
train_dataset, test_dataset, scaler, X_train, X_test, y_train, y_test = get_stock_dataset('./GOOG.csv', config)
train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=False)
# ------------------- 定义模型、超参数 -------------------
model = LSTMModel(input_size=1, output_size=1)
print(model) # 打印模型结构
model = model.to(device)
optimizer = optim.AdamW(model.parameters(), lr=config.learning_rate)
criterion = nn.MSELoss()
# ------------------- 定义学习率衰减策略 -------------------
def lr_lambda(epoch):
total_epochs = config.epochs
start_lr = config.learning_rate
end_lr = start_lr * 0.01
update_lr = ((total_epochs - epoch) / total_epochs) * (start_lr - end_lr) + end_lr
return update_lr * (1 / config.learning_rate)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
# ------------------- 训练与验证 -------------------
for epoch in range(1, config.epochs+1):
model.train()
swanlab.log({"train/lr": scheduler.get_last_lr()[0]}, step=epoch)
train(model, train_loader, optimizer, criterion, scheduler)
if epoch == 1: best_loss = None
best_loss = validate(model, config, test_loader, criterion, epoch, best_loss=best_loss)
# ------------------- 使用最佳模型推理,与生成可视化结果 -------------------
with torch.no_grad():
# 加载最佳模型
best_model_path = os.path.join(config.save_path, 'best_model.pth')
model.load_state_dict(torch.load(best_model_path))
model.eval()
train_predictions = model(X_train.to(device)).to('cpu').numpy()
val_predictions = model(X_test.to(device)).to('cpu').numpy()
# 可视化预测结果
visualize_predictions(train_predictions, val_predictions, scaler, X_train, X_test, y_train, y_test, config.lookback)
6.开始训练!
执行下面的脚本即可开始训练:
python train.py
训练过程看这里:LSTM谷歌股票预测 - SwanLab
这里我们用SwanLab在可视化整个训练过程,以帮助我们更好的分析实验。
在首次使用SwanLab时,需要去官网注册一下账号,然后在用户设置复制一下你的API Key。
然后在终端输入swanlab login
:
swanlab login
把API Key粘贴进去即可完成登录,之后就不需要再次登录了。
从图表可以看出,可以看到训练和测试的loss都很快下降并达到了收敛:
我们再来看一下模型的预测情况,在训练集上:
可以看到表现非常好。
让我们再看看测试集:
形状是基本吻合的,但在预测上有一点滞后性,后续可以通过一些其他策略来优化这一点。
至此,我们顺利完成了用LSTM模型微调在谷歌股价数据集上的训练过程~
相关链接
- 代码:完整代码直接看本文第5节
- 数据集:Kaggle
- 实验过程:LSTM谷歌股票预测 - SwanLab
- SwanLab:https://swanlab.cn
- PyTorch:PyTorch官网
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)