一、设计要求

L A B : V r e f = 1.2   o r   0.8 , ∂ V r e f ∂ T ∣ T = 60 ° = 0 , I D 4 = 10 u LAB :V_{ref} = 1.2 \,or\,0.8 ,\frac{\partial V_{ref}}{\partial T} \small \mid T=60°=0,I_{D4} = 10u LAB:Vref=1.2or0.8TVrefT=60°=0ID4=10u

二、原理图分析

Typora_image-20230730113919750

∣ I D 4 ∣ = V T ln ⁡ n R 1 + ∣ V B E 1 ∣ R 2 = 1 R 2 ( ∣ V B E 1 ∣ + R 2 R 1 V T ln ⁡ n ) \begin{aligned}\left|I_{D 4}\right| & =\frac{V_{T} \ln n}{R_{1}}+\frac{\left|V_{B E 1}\right|}{R_{2}} \\& =\frac{1}{R_{2}}\left(\left|V_{B E 1}\right|+\frac{R_{2}}{R_{1}} V_{T} \ln n\right)\end{aligned} ID4=R1VTlnn+R2VBE1=R21(VBE1+R1R2VTlnn)
V B G = R 4 R 2 ( ∣ V B E 1 ∣ + R 2 R 1 V T ln ⁡ n ) V_{B G}=\frac{R_{4}}{R_{2}}\left(\left|V_{B E 1}\right|+\frac{R_{2}}{R_{1}} V_{T} \ln n\right) VBG=R2R4(VBE1+R1R2VTlnn)

三、三极管温度特性

  1. 电路图

Typora_image-20230729174216157 Typora_image-20230729174418663

image-20230816094436796

  2. 仿真 ∂VBE1,∂VBE2,∂ΔVBE

  运用 deriv 函数 添加 VBE1 ,VBE2 的斜率到输出,再添加 ΔVBE 的斜率

image-20230729182413040

∂VBE1 肯定比 ∂VBE2 要大,这样 ∂ΔVBE 才会为正

image-20230816094324082

三、计算电阻值

  ​ 用 (1) 可以算出 R1 / R3 = 9.47(使左边为 0 达到 0 温度系数)
∂ V out  ∂ T = ∂ V B E 1 ∂ T + ( k q ln ⁡ n ) R 1 R 3                                     ( 1 ) = ∂ V B E 2 ∂ T + ( k q ln ⁡ n ) ( 1 + R 1 R 3 )                       \begin{aligned}\frac{\partial V_{\text {out }}}{\partial T} & =\frac{\partial V_{B E 1}}{\partial T}+\left(\frac{k}{q} \ln n\right) \frac{R_{1}}{R_{3}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\& =\frac{\partial V_{B E 2}}{\partial T}+\left(\frac{k}{q} \ln n\right)\left(1+\frac{R_{1}}{R_{3}}\right)\end{aligned}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, TVout =TVBE1+(qklnn)R3R1(1)=TVBE2+(qklnn)(1+R3R1)

Typora_image-20230729201348653

  上面求得
∂ V B E 1 ∂ T ∣ T = 60 ° = − 1.7 m V / ° C , ∂ V B E ∂ T ∣ T = 60 ° = 179 u V / ° C \frac{\partial V_{BE1}}{\partial T} |_{T=60°} = -1.7mV/°C,\frac{\partial V_{BE}}{\partial T} |_{T=60°} = 179uV/°C TVBE1T=60°=1.7mVCTVBET=60°=179uVC
  ​ 当 R1 / R3 = 9.47 温度系数为 0,对应现在电路图 R2 / R1 = 9.47
V B E = 0.7   V , V T = 26   m V , l n 8 = 2.1 V I D 4 = 1 R 2 ( 0.736 V + 9.47 × 54.65 m V ) = 10 u ⟹ R 2 = 124.8 K ⟹ R 1 = 13.18 K V_{BE} = 0.7\,V,V_T = 26\,mV,ln8=2.1V \\I_{D4}=\frac{1}{R_2}\left(0.736V+9.47\times 54.65mV \right)=10u \\\Longrightarrow R_2 = 124.8K \\\Longrightarrow R1= 13.18K VBE=0.7VVT=26mVln8=2.1VID4=R21(0.736V+9.47×54.65mV)=10uR2=124.8KR1=13.18K

四、扫描MOS曲线

  从三极管的温度曲线仿真得 VEB1 = 0.736V ,即输入共模电平为 0.736V,输出可以通过MOS管仿真得到为 1.565V

image-20230730164147129

五、OP 设计

V i n = 0.736 V , V D D = 2.5 V , V O U T = 1.565 V , A V = 60 d B 左右 V_{in} = 0.736V ,V_{DD} = 2.5 V,V_{OUT} = 1.565V,A_{V}=60 dB左右 Vin=0.736V,VDD=2.5V,VOUT=1.565VAV=60dB左右

  1. OP电路图

image-20230816101334075

  2. 测试电路

image-20230730220128454

  3. op直流仿真

image-20230810212024658

六、添加OP去BG电路

  1. BG直流仿真

VBE的值没有达到我们的预期736mV,OP的输出也增大一点

image-20230810205834541

  2. 查看温度曲线

image-20230810210257875

  3. 调节温度系数和电流

​ 调节 R2 与 R1 可以调节温度特性,也可以调节电流大小,减少R2提高电流,R3相应比例变化

R3 = R4 = 121.55K ,R2 = 12.855K

七、仿真

  1. 直流仿真

​ 在60°电压将不受温度影响

image-20230816094759441

  2. 稳定性仿真

image-20230810220627631

  相位裕度太低了,加一个补偿电容,米勒补偿效果并不是很好,其实调节gm1更加有效,可以使得第二极点变大

image-20230810221816310

  3. 添加启动电路

image-20230810232315865

  4. 上电仿真

image-20230810234537293

image-20230816095026562

七、总结

  这个只是简单的进行了设计,有很多地方有待优化,放大器的增益与相位裕度,偏置电路,启动电路都有待优化。

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐