1.数据集介绍

最近在撸pytorch框架,这里参考深度学习经典数据集mnist的“升级版”fashion mnist,来做图像分类,主要目的是熟悉pytorch框架,代码中包含了大量的pytorch使用相关的注释。
(1)MNIST
MNIST是深度学习最基本的数据集之一,由CNN鼻祖yann lecun建立的一个手写字符数据集,包含60000张训练图像和10000张测试图像,包含数字0-9共10个类别.
在这里插入图片描述
(2)FASHION MNIST
由于MNIST数据集太简单,简单的网络就可以达到99%以上的top one准确率,也就是说在这个数据集上表现较好的网络,在别的任务上表现不一定好。因此zalando research的工作人员建立了fashion mnist数据集,该数据集由衣服、鞋子等服饰组成,包含70000张图像,其中60000张训练图像加10000张测试图像,图像大小为28x28,单通道,共分10个类,如下图,每3行表示一个类。
在这里插入图片描述
数据集信息如下:
在这里插入图片描述
数据集共分10个类,类别描述如下:
在这里插入图片描述

标题2. pytorch进行分类

pytorch中提供了这个数据集的下载接口,下面分别使用全连接网络和CNN网络来进行分类
(1)FC网络
输入图像大小为28x28,设计如下全连接网络,代码命名为02_fashion_mnist_fc.py
FC1(784) + Relu(1000) + FC2(500) + Relu + FC3(200) + Relu3 + FC4(10) + log_softmax

from __future__ import print_function   # 从future版本导入print函数功能
import argparse                         # 加载处理命令行参数的库
import torch                            # 引入相关的包
import torch.nn as nn                   # 指定torch.nn别名nn
import torch.nn.functional as F         # 引用神经网络常用函数包,不具有可学习的参数
import torch.optim as optim
from torchvision import datasets, transforms  # 加载pytorch官方提供的dataset

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 1000) # 784表示输入神经元数量,1000表示输出神经元数量
        self.fc2 = nn.Linear(1000, 500)
        self.fc3 = nn.Linear(500, 200)
        self.fc4 = nn.Linear(200, 10)

    def forward(self, x):
        x = x.view(-1, 28*28)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = self.fc4(x)
        return F.log_softmax(x, dim=1)  #Applies a softmax followed by a logarithm, output batch * classes tensor

def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)       # negative log likelihood loss(nll_loss), sum up batch cross entropy
        loss.backward()
        optimizer.step()                        # 根据parameter的梯度更新parameter的值
        #print(epoch, batch_idx, type(batch_idx))
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():       #无需计算梯度
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')

    parser.add_argument('--save-model', action='store_true', default=True,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.FashionMNIST('./fashionmnist_data/', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.FashionMNIST('./fashionmnist_data/', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net().to(device)
    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)   #optimizer存储了所有parameters的引用,每个parameter都包含gradient
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[12, 24], gamma=0.1)   #学习率按区间更新

    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(args, model, device, test_loader)

    if (args.save_model):
        torch.save(model.state_dict(), "mnist_fc.pt")

# 当.py文件直接运行时,该语句及以下的代码被执行,当.py被调用时,该语句及以下的代码不被执行
if __name__ == '__main__':
    main()

python 02_fashion_mnist_fc.py --epochs=36
在这里插入图片描述
备注:
数据集下载比较慢,第一次训练时,train_loader中download设置为True,后面再训练时改为False
F.log_softmax只是对输出结果做softmax后再取log
optimizer存储了所有parameters的引用,每个parameter都包含gradient
scheduler根据设置的epoch区间来调整学习率大小,调整率为gamma
训练过程中,随机选择1个batch的数据显示,如下:
在这里插入图片描述
训练结果如下,top1准确率为88%,网络参数大小为5.1M
在这里插入图片描述
2.2 CNN网络
FC网络参数量太大,而CNN网络考虑到图像的局部关联特性,使用卷积网络,参数量大小减小,设计如下CNN,代码全名为02_fashion_mnist_cnn.py
conv(1, 20, 5) + Relu + conv(20, 50, 5) + flatten + Relu + FC(10) + log_softmax

from __future__ import print_function   # 从future版本导入print函数功能
import argparse                         # 加载处理命令行参数的库
import torch                            # 引入相关的包
import torch.nn as nn                   # 指定torch.nn别名nn
import torch.nn.functional as F         # 引用神经网络常用函数包,不具有可学习的参数
import torch.optim as optim
from torchvision import datasets, transforms  # 加载pytorch官方提供的dataset

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)  # 1表示输入通道,20表示输出通道,5表示conv核大小,1表示conv步长
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4 * 4 * 50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')

    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.FashionMNIST('./fashionmnist_data/', train=True, download=False,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.FashionMNIST('./fashionmnist_data/', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net().to(device)
    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[12, 24], gamma=0.1)

    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(args, model, device, test_loader)

    if (args.save_model):
        torch.save(model.state_dict(), "mnist_cnn.pt")


# 当.py文件直接运行时,该语句及以下的代码被执行,当.py被调用时,该语句及以下的代码不被执行
if __name__ == '__main__':
    main()

python 02_fashion_mnist_cnn.py --epochs=36
在这里插入图片描述
训练结果如下,top1准确率为91%。
在这里插入图片描述

标题3. references

[1] https://github.com/zalandoresearch/fashion-mnist
[2] https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html
[3] https://github.com/zalandoresearch/fashion-mnist

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐