筛选性质

设信号 s ( t ) \displaystyle s\left( t \right) s(t)是一个在 t = t 0 t = {t_0} t=t0处连续的函数,则有
s ( t ) δ ( t − t 0 ) = s ( t 0 ) δ ( t − t 0 ) s\displaystyle \left( t \right)\delta (t - {t_0}) = s\left( {{t_0}} \right)\delta (t - {t_0}) s(t)δ(tt0)=s(t0)δ(tt0)

取样性质

设信号 s ( t ) s\left( t \right) s(t)是一个在 t = t 0 t = {t_0} t=t0处连续的函数,则有
∫ − ∞ + ∞ s ( t ) δ ( t − t 0 ) d t = s ( t 0 ) \displaystyle \int_{ - \infty }^{ + \infty } {s\left( t \right)} \delta (t - {t_0})dt = s({t_0}) +s(t)δ(tt0)dt=s(t0)
特别地,当 t 0 = 0 {t_0} = 0 t0=0
∫ − ∞ + ∞ s ( t ) δ ( t ) d t = s ( 0 ) \int_{ - \infty }^{ + \infty } {s\left( t \right)} \delta (t)dt = s(0) +s(t)δ(t)dt=s(0)

尺度性质证明

在这里插入图片描述
在这里插入图片描述
由上图可知矩形的面积如下:
S [ r e c t ( t ) ] = 1 S [ r e c t ( a t ) ] = 1 ∣ a ∣ \begin{aligned} \displaystyle S[rect(t)] &= 1\\ S[rect(at)] &= \frac{1}{{|a|}} \end{aligned} S[rect(t)]S[rect(at)]=1=a1
τ → 0 \tau \to {\rm{0}} τ0,有
lim ⁡ τ → 0 r e c t ( t ) = δ ( t ) lim ⁡ τ → 0 r e c t ( a t ) = 1 ∣ a ∣ δ ( t ) \begin{aligned} \mathop {\lim }\limits_{\tau \to {\rm{0}}} rect(t) &= \delta (t)\\ \displaystyle \mathop {\lim }\limits_{\tau \to {\rm{0}}} rect(at) &= \frac{1}{{|a|}}\delta (t) \end{aligned} τ0limrect(t)τ0limrect(at)=δ(t)=a1δ(t)
证明: δ ( a t − b ) = 1 ∣ a ∣ δ ( t − b a ) \displaystyle \delta (at - b) = \frac{1}{{|a|}}\delta (t - \frac{b}{a}) δ(atb)=a1δ(tab)

a > 0 a > 0 a>0时,令 a t − b = x at - b = x atb=x
∫ − ∞ + ∞ s ( t ) δ ( a t − b ) d t = 1 a ∫ − ∞ + ∞ s ( 1 a x + b a ) δ ( x ) d x = 1 a s ( b a ) \begin{aligned} \displaystyle \int_{ - \infty }^{ + \infty } {s\left( t \right)} \delta (at - b)dt &= \frac{1}{a}\int_{ - \infty }^{ + \infty } {s\left( {\frac{1}{a}x + \frac{b}{a}} \right)} \delta (x)dx\\ & = \frac{1}{a}s\left( {\frac{b}{a}} \right) \displaystyle \end{aligned} +s(t)δ(atb)dt=a1+s(a1x+ab)δ(x)dx=a1s(ab)
根据取样性质
∫ − ∞ + ∞ 1 a s ( t ) δ ( t − b a ) d t = 1 a s ( b a ) \int_{ - \infty }^{ + \infty } {\frac{1}{a}s\left( t \right)} \delta (t - \frac{b}{a})dt = \frac{1}{a}s\left( {\frac{b}{a}} \right) +a1s(t)δ(tab)dt=a1s(ab)
a < 0 a < 0 a<0时,令 − ∣ a ∣ t − b = x -|a|t - b = x atb=x
{ t : − ∞ → + ∞ x : + ∞ → − ∞ \left\{ \begin{array}{l} t: - \infty \to + \infty \\ x: + \infty \to - \infty \end{array} \right. {t:+x:+

∫ − ∞ + ∞ s ( t ) δ ( a t − b ) d t = − 1 ∣ a ∣ ∫ + ∞ − ∞ s ( − 1 ∣ a ∣ x − b ∣ a ∣ ) δ ( x ) d x = 1 ∣ a ∣ ∫ − ∞ + ∞ s ( − 1 ∣ a ∣ x − b ∣ a ∣ ) δ ( x ) d x = 1 ∣ a ∣ s ( − b ∣ a ∣ ) \begin{aligned} \displaystyle {\int_{ - \infty }^{ + \infty } {s\left( t \right)} \delta (at - b)dt }&={ - \frac{1}{{|a|}}\int_{ + \infty }^{ - \infty } {s\left( { - \frac{1}{{|a|}}x - \frac{b}{{|a|}}} \right)} \delta (x)dx}\\ \displaystyle &= \frac{1}{{|a|}}\int_{ - \infty }^{ + \infty } {s\left( { - \frac{1}{{|a|}}x - \frac{b}{{|a|}}} \right)} \delta (x)dx\\ \displaystyle &= \frac{1}{{|a|}}s\left( { - \frac{b}{{|a|}}} \right) \end{aligned} +s(t)δ(atb)dt=a1+s(a1xab)δ(x)dx=a1+s(a1xab)δ(x)dx=a1s(ab)

同样根据取样性质,且 ∣ a ∣ = − a |a| = - a a=a
∫ − ∞ + ∞ 1 ∣ a ∣ s ( t ) δ ( t + b ∣ a ∣ ) d t = 1 ∣ a ∣ s ( − b ∣ a ∣ ) \int_{ - \infty }^{ + \infty } {\frac{1}{{|a|}}s\left( t \right)} \delta (t + \frac{b}{{|a|}})dt = \frac{1}{{|a|}}s\left( { - \frac{b}{{|a|}}} \right) +a1s(t)δ(t+ab)dt=a1s(ab)
得证。

根据冲激函数尺度性质证明 cos ⁡ ( w 0 t ) \cos (w_0t) cos(w0t)的傅里叶变换

根据欧拉公式
cos ⁡ ( w t ) = 1 2 ( e j w t + e − j w t ) \cos (wt) = \frac{1}{2}({e^{jwt}} + {e^{ - jwt}}) cos(wt)=21(ejwt+ejwt)
其Fourier变换为
G ( f ) = ∫ + ∞ − ∞ cos ⁡ ( w 0 t ) e − j w t d t = 1 2 ∫ + ∞ − ∞ ( e j w 0 t + e − j w 0 t ) e − j w t d t = 1 2 ∫ + ∞ − ∞ ( e − j 2 π ( f − f 0 ) t + e − j 2 π ( f + f 0 ) t ) d t = 1 2 [ δ ( f − f 0 ) + δ ( f + f 0 ) ] \begin{aligned} \displaystyle G(f) &= \int_{ + \infty }^{ - \infty } {\cos ({w_0}t)} {e^{ - jwt}}dt\\ \displaystyle & = \frac{1}{2}\int_{ + \infty }^{ - \infty } {({e^{j{w_0}t}} + {e^{ - j{w_0}t}})} {e^{ - jwt}}dt\\ \displaystyle & = \frac{1}{2}\int_{ + \infty }^{ - \infty } {({e^{ - j2\pi (f - {f_0})t}} + {e^{ - j2\pi (f + {f_0})t}})} dt\\ \displaystyle & = \frac{1}{2}[\delta (f - {f_0}) + \delta (f + {f_0})] \displaystyle \end{aligned} G(f)=+cos(w0t)ejwtdt=21+(ejw0t+ejw0t)ejwtdt=21+(ej2π(ff0)t+ej2π(f+f0)t)dt=21[δ(ff0)+δ(f+f0)]
根据冲激函数尺度性质
δ ( w − w 0 ) = δ [ 2 π ( f − f 0 ) ] = 1 2 π δ [ ( f − f 0 ) ] \begin{aligned} \displaystyle \delta (w - {w_0}) &= \delta [2\pi (f - {f_0})]\\ & = \frac{1}{{2\pi }}\delta [(f - {f_0})] \end{aligned} δ(ww0)=δ[2π(ff0)]=2π1δ[(ff0)]
所以
G ( w ) = π [ δ ( w − w 0 ) + δ ( w + w 0 ) ] G(w) = \pi [\delta (w - {w_0}) + \delta (w + {w_0})] G(w)=π[δ(ww0)+δ(w+w0)]

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐